Classification of Tweets about Reported Events using Neural Networks

NUT@EMNLP Pub Date : 1900-01-01 DOI:10.18653/v1/W18-6121
Kiminobu Makino, Yuka Takei, Taro Miyazaki, Jun Goto
{"title":"Classification of Tweets about Reported Events using Neural Networks","authors":"Kiminobu Makino, Yuka Takei, Taro Miyazaki, Jun Goto","doi":"10.18653/v1/W18-6121","DOIUrl":null,"url":null,"abstract":"We developed a system that automatically extracts “Event-describing Tweets” which include incidents or accidents information for creating news reports. Event-describing Tweets can be classified into “Reported-event Tweets” and “New-information Tweets.” Reported-event Tweets cite news agencies or user generated content sites, and New-information Tweets are other Event-describing Tweets. A system is needed to classify them so that creators of factual TV programs can use them in their productions. Proposing this Tweet classification task is one of the contributions of this paper, because no prior papers have used the same task even though program creators and other events information collectors have to do it to extract required information from social networking sites. To classify Tweets in this task, this paper proposes a method to input and concatenate character and word sequences in Japanese Tweets by using convolutional neural networks. This proposed method is another contribution of this paper. For comparison, character or word input methods and other neural networks are also used. Results show that a system using the proposed method and architectures can classify Tweets with an F1 score of 88 %.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We developed a system that automatically extracts “Event-describing Tweets” which include incidents or accidents information for creating news reports. Event-describing Tweets can be classified into “Reported-event Tweets” and “New-information Tweets.” Reported-event Tweets cite news agencies or user generated content sites, and New-information Tweets are other Event-describing Tweets. A system is needed to classify them so that creators of factual TV programs can use them in their productions. Proposing this Tweet classification task is one of the contributions of this paper, because no prior papers have used the same task even though program creators and other events information collectors have to do it to extract required information from social networking sites. To classify Tweets in this task, this paper proposes a method to input and concatenate character and word sequences in Japanese Tweets by using convolutional neural networks. This proposed method is another contribution of this paper. For comparison, character or word input methods and other neural networks are also used. Results show that a system using the proposed method and architectures can classify Tweets with an F1 score of 88 %.
使用神经网络对报道事件的推文进行分类
我们开发了一个系统,可以自动提取“事件描述推文”,其中包括事件或事故信息,用于创建新闻报道。事件描述推文可以分为“报告事件推文”和“新信息推文”。报道事件推文引用新闻机构或用户生成的内容网站,而新信息推文是其他描述事件的推文。需要一个系统来对它们进行分类,以便事实电视节目的创作者可以在他们的制作中使用它们。提出这个Tweet分类任务是本文的贡献之一,因为之前的论文没有使用过相同的任务,尽管程序创建者和其他事件信息收集者必须这样做才能从社交网站中提取所需的信息。为了对该任务中的推文进行分类,本文提出了一种使用卷积神经网络对日语推文中的字符和单词序列进行输入和连接的方法。该方法是本文的另一个贡献。为了进行比较,还使用了字符或单词输入法和其他神经网络。结果表明,使用所提出的方法和体系结构的系统可以以88%的F1分数对tweet进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信