Liouville’s theorem from the principle of maximum caliber in phase space

Diego L. Gonz'alez, S. Davis
{"title":"Liouville’s theorem from the principle of maximum caliber in phase space","authors":"Diego L. Gonz'alez, S. Davis","doi":"10.1063/1.4959044","DOIUrl":null,"url":null,"abstract":"One of the cornerstones in non–equilibrium statistical mechanics (NESM) is Liouville’s theorem, a differential equation for the phase space probability ρ(q, p; t). This is usually derived considering the flow in or out of a given surface for a physical system (composed of atoms), via more or less heuristic arguments.In this work, we derive the Liouville equation as the partial differential equation governing the dynamics of the time-dependent probability ρ(q, p; t) of finding a “particle” with Lagrangian L(q,q˙;t) in a specific point (q, p) in phase space at time t, with p=∂L/∂q˙. This derivation depends only on considerations of inference over a space of continuous paths. Because of its generality, our result is valid not only for “physical” systems but for any model depending on constrained information about position and velocity, such as time series.","PeriodicalId":331413,"journal":{"name":"arXiv: Classical Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4959044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the cornerstones in non–equilibrium statistical mechanics (NESM) is Liouville’s theorem, a differential equation for the phase space probability ρ(q, p; t). This is usually derived considering the flow in or out of a given surface for a physical system (composed of atoms), via more or less heuristic arguments.In this work, we derive the Liouville equation as the partial differential equation governing the dynamics of the time-dependent probability ρ(q, p; t) of finding a “particle” with Lagrangian L(q,q˙;t) in a specific point (q, p) in phase space at time t, with p=∂L/∂q˙. This derivation depends only on considerations of inference over a space of continuous paths. Because of its generality, our result is valid not only for “physical” systems but for any model depending on constrained information about position and velocity, such as time series.
由相空间最大口径原理导出的刘维尔定理
非平衡统计力学(NESM)的基石之一是Liouville定理,它是相空间概率ρ(q, p;这通常是通过或多或少的启发式论证,考虑到物理系统(由原子组成)的给定表面的流入或流出。在这项工作中,我们推导出Liouville方程作为控制随时间变化的概率ρ(q, p;t)在t时刻相空间的特定点(q, p)中找到具有拉格朗日L(q,q˙t)的“粒子”,p=∂L/∂q˙。这个推导只依赖于对连续路径空间的推理的考虑。由于其通用性,我们的结果不仅适用于“物理”系统,而且适用于任何依赖于位置和速度受限信息的模型,例如时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信