Empirical Bayes Control of the False Discovery Exceedance

Pallavi Basu, Luella Fu, Alessio Saretto, Wenguang Sun
{"title":"Empirical Bayes Control of the False Discovery Exceedance","authors":"Pallavi Basu, Luella Fu, Alessio Saretto, Wenguang Sun","doi":"10.24149/wp2115","DOIUrl":null,"url":null,"abstract":"In sparse large-scale testing problems where the false discovery proportion (FDP) is highly variable, the false discovery exceedance (FDX) provides a valuable alternative to the widely used false discovery rate (FDR). We develop an empirical Bayes approach to controlling the FDX. We show that for independent hypotheses from a two-group model and dependent hypotheses from a Gaussian model fulfilling the exchangeability condition, an oracle decision rule based on ranking and thresholding the local false discovery rate (lfdr) is optimal in the sense that the power is maximized subject to FDX constraint. We propose a data-driven FDX procedure that emulates the oracle via carefully designed computational shortcuts. We investigate the empirical performance of the proposed method using simulations and illustrate the merits of FDX control through an application for identifying abnormal stock trading strategies.","PeriodicalId":322311,"journal":{"name":"Federal Reserve Bank of Dallas, Working Papers","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal Reserve Bank of Dallas, Working Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24149/wp2115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In sparse large-scale testing problems where the false discovery proportion (FDP) is highly variable, the false discovery exceedance (FDX) provides a valuable alternative to the widely used false discovery rate (FDR). We develop an empirical Bayes approach to controlling the FDX. We show that for independent hypotheses from a two-group model and dependent hypotheses from a Gaussian model fulfilling the exchangeability condition, an oracle decision rule based on ranking and thresholding the local false discovery rate (lfdr) is optimal in the sense that the power is maximized subject to FDX constraint. We propose a data-driven FDX procedure that emulates the oracle via carefully designed computational shortcuts. We investigate the empirical performance of the proposed method using simulations and illustrate the merits of FDX control through an application for identifying abnormal stock trading strategies.
错误发现超越的经验贝叶斯控制
在稀疏大规模测试问题中,错误发现比例(FDP)是高度可变的,错误发现超出(FDX)为广泛使用的错误发现率(FDR)提供了一种有价值的替代方法。我们开发了一种经验贝叶斯方法来控制FDX。我们证明了对于来自两组模型的独立假设和来自满足互换性条件的高斯模型的依赖假设,基于排序和阈值的oracle决策规则是局部错误发现率(lfdr)的最优决策规则,因为在FDX约束下功率最大。我们提出了一个数据驱动的FDX程序,通过精心设计的计算捷径来模拟oracle。我们通过模拟研究了所提出方法的经验性能,并通过识别异常股票交易策略的应用说明了FDX控制的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信