Shape-Constrained and Unconstrained Density Estimation Using Geometric Exploration

Sutanoy Dasgupta, D. Pati, Ian H. Jermyn, Anuj Srivastava
{"title":"Shape-Constrained and Unconstrained Density Estimation Using Geometric Exploration","authors":"Sutanoy Dasgupta, D. Pati, Ian H. Jermyn, Anuj Srivastava","doi":"10.1109/SSP.2018.8450768","DOIUrl":null,"url":null,"abstract":"The problem of nonparametrically estimating probability density functions (pdfs) from observed data requires posing and solving optimization problems on the space of pdfs. We take a geometric approach and explore this space for optimization using actions of a time-warping group. One action, termed area preserving, is transitive and is applicable to the case of unconstrained density estimation. In this case, we take a two-step approach that involves obtaining any initial estimate of the pdf and then transforming it via this warping action to reach the final estimate by maximizing the log-likelihood function. Another action, termed mode-preserving, is useful in situations where the pdf is constrained in shape, i.e. the number of its modes is known. As earlier, we initialize the estimation with an arbitrary element of the correct shape class, and then search over all time warpings to reach the optimal pdf within that shape class. Optimization over warping functions is performed numerically using the geometry of the group of warping functions. These methods are illustrated using a number of simulated examples.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of nonparametrically estimating probability density functions (pdfs) from observed data requires posing and solving optimization problems on the space of pdfs. We take a geometric approach and explore this space for optimization using actions of a time-warping group. One action, termed area preserving, is transitive and is applicable to the case of unconstrained density estimation. In this case, we take a two-step approach that involves obtaining any initial estimate of the pdf and then transforming it via this warping action to reach the final estimate by maximizing the log-likelihood function. Another action, termed mode-preserving, is useful in situations where the pdf is constrained in shape, i.e. the number of its modes is known. As earlier, we initialize the estimation with an arbitrary element of the correct shape class, and then search over all time warpings to reach the optimal pdf within that shape class. Optimization over warping functions is performed numerically using the geometry of the group of warping functions. These methods are illustrated using a number of simulated examples.
基于几何探测的形状约束和无约束密度估计
从观测数据非参数估计概率密度函数的问题需要在概率密度函数空间上提出并求解优化问题。我们采用几何方法,并利用时间翘曲群的动作来探索这个空间的优化。一种称为面积保持的作用是可传递的,适用于无约束密度估计的情况。在这种情况下,我们采用两步方法,包括获得pdf的任何初始估计,然后通过这种扭曲动作对其进行转换,从而通过最大化对数似然函数来达到最终估计。另一种称为保模的动作,在pdf形状受限的情况下很有用,即它的模态数量是已知的。如前所述,我们使用正确形状类的任意元素初始化估计,然后搜索所有时间翘曲,以在该形状类中获得最佳pdf。利用整曲函数组的几何图形,在数值上对整曲函数进行优化。这些方法是通过一些模拟的例子来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信