Design of a Security Framework on MapReduce

Zhen Guo, Xudong Zhu, Lijun Guo, S. Kang
{"title":"Design of a Security Framework on MapReduce","authors":"Zhen Guo, Xudong Zhu, Lijun Guo, S. Kang","doi":"10.1109/INCoS.2013.29","DOIUrl":null,"url":null,"abstract":"To deploy Map-Reduce as a data processing service over cloud computing, we must provide necessary security mechanisms to protect customers confidential data processed. In this paper, we present Map-Reduce based framework which provides strong security and privacy guarantees for distributed computations on sensitive data. The framework is a novel integration of access control via attribute-based encryption, and privacy-preserving aggregate computation via homomorphic encryption. Data providers control the security policy for their sensitive data. Users without security expertise can perform computations on the data, but the framework confines these computations, preventing information leakage beyond the data provider's policy. Our prototype implementation demonstrates the flexibility of the framework on several case studies. It was proved more efficient than fully homomorphic encryption.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To deploy Map-Reduce as a data processing service over cloud computing, we must provide necessary security mechanisms to protect customers confidential data processed. In this paper, we present Map-Reduce based framework which provides strong security and privacy guarantees for distributed computations on sensitive data. The framework is a novel integration of access control via attribute-based encryption, and privacy-preserving aggregate computation via homomorphic encryption. Data providers control the security policy for their sensitive data. Users without security expertise can perform computations on the data, but the framework confines these computations, preventing information leakage beyond the data provider's policy. Our prototype implementation demonstrates the flexibility of the framework on several case studies. It was proved more efficient than fully homomorphic encryption.
MapReduce安全框架的设计
为了在云计算上部署Map-Reduce作为数据处理服务,我们必须提供必要的安全机制来保护处理的客户机密数据。本文提出了基于Map-Reduce的分布式计算框架,为敏感数据的分布式计算提供了强大的安全和隐私保障。该框架是通过基于属性的加密实现访问控制和通过同态加密实现保护隐私的聚合计算的新颖集成。数据提供者控制其敏感数据的安全策略。没有安全专业知识的用户可以对数据执行计算,但是框架限制了这些计算,防止信息泄露超出数据提供者的策略。我们的原型实现在几个案例研究中展示了框架的灵活性。它被证明比完全同态加密更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信