Hardware-efficient stochastic rounding unit design for DNN training: late breaking results

Sung-En Chang, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Z. Li, Yanyue Xie, Minghai Qin, Xue Lin, Zhenman Fang, Yanzhi Wang, Zhenman, Fang
{"title":"Hardware-efficient stochastic rounding unit design for DNN training: late breaking results","authors":"Sung-En Chang, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Z. Li, Yanyue Xie, Minghai Qin, Xue Lin, Zhenman Fang, Yanzhi Wang, Zhenman, Fang","doi":"10.1145/3489517.3530619","DOIUrl":null,"url":null,"abstract":"Stochastic rounding is crucial in the training of low-bit deep neural networks (DNNs) to achieve high accuracy. Unfortunately, prior studies require a large number of high-precision stochastic rounding units (SRUs) to guarantee the low-bit DNN accuracy, which involves considerable hardware overhead. In this paper, we propose an automated framework to explore hardware-efficient low-bit SRUs (ESRUs) that can still generate high-quality random numbers to guarantee the accuracy of low-bit DNN training. Experimental results using state-of-the-art DNN models demonstrate that, compared to the prior 24-bit SRU with 24-bit pseudo random number generator (PRNG), our 8-bit with 3-bit PRNG reduces the SRU resource usage by 9.75× while achieving a higher accuracy.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic rounding is crucial in the training of low-bit deep neural networks (DNNs) to achieve high accuracy. Unfortunately, prior studies require a large number of high-precision stochastic rounding units (SRUs) to guarantee the low-bit DNN accuracy, which involves considerable hardware overhead. In this paper, we propose an automated framework to explore hardware-efficient low-bit SRUs (ESRUs) that can still generate high-quality random numbers to guarantee the accuracy of low-bit DNN training. Experimental results using state-of-the-art DNN models demonstrate that, compared to the prior 24-bit SRU with 24-bit pseudo random number generator (PRNG), our 8-bit with 3-bit PRNG reduces the SRU resource usage by 9.75× while achieving a higher accuracy.
用于深度神经网络训练的硬件高效随机舍入单元设计:迟破结果
随机舍入是低比特深度神经网络(dnn)训练中实现高精度的关键。不幸的是,之前的研究需要大量的高精度随机舍入单元(sru)来保证低位DNN的精度,这涉及到相当大的硬件开销。在本文中,我们提出了一个自动化框架来探索硬件高效的低比特sru (esru),它仍然可以生成高质量的随机数,以保证低比特DNN训练的准确性。使用最先进的DNN模型的实验结果表明,与之前使用24位伪随机数生成器(PRNG)的24位SRU相比,我们的8位与3位PRNG将SRU资源使用减少了9.75倍,同时实现了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信