The LSQR method for solving tensor least-squares problems

A. Bentbib, A. Khouia, H. Sadok
{"title":"The LSQR method for solving tensor least-squares problems","authors":"A. Bentbib, A. Khouia, H. Sadok","doi":"10.1553/etna_vol55s92","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in finding an approximate solution X̂ of the tensor least-squares minimization problem minX ∥∥X ×1 A(1) ×2 A(2) ×3 · · · ×N A(N) − G∥∥, where G ∈ RJ1×J2×···×JN and A(i) ∈ RJi×Ii (i = 1, . . . , N ) are known and X ∈ RI1×I2×···×IN is the unknown tensor to be approximated. Our approach is based on two steps. Firstly, we apply the CP or HOSVD decomposition to the right-hand side tensor G. Secondly, we perform the well-known Golub-Kahan bidiagonalization for each coefficient matrix A(i)(i = 1, . . . , N ) to obtain a reduced tensor least-squares minimization problem. This type of equations may appear in color image and video restorations as we described below. Some numerical tests are performed to show the effectiveness of our proposed method.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we are interested in finding an approximate solution X̂ of the tensor least-squares minimization problem minX ∥∥X ×1 A(1) ×2 A(2) ×3 · · · ×N A(N) − G∥∥, where G ∈ RJ1×J2×···×JN and A(i) ∈ RJi×Ii (i = 1, . . . , N ) are known and X ∈ RI1×I2×···×IN is the unknown tensor to be approximated. Our approach is based on two steps. Firstly, we apply the CP or HOSVD decomposition to the right-hand side tensor G. Secondly, we perform the well-known Golub-Kahan bidiagonalization for each coefficient matrix A(i)(i = 1, . . . , N ) to obtain a reduced tensor least-squares minimization problem. This type of equations may appear in color image and video restorations as we described below. Some numerical tests are performed to show the effectiveness of our proposed method.
求解张量最小二乘问题的LSQR方法
在本文中,我们感兴趣的是寻找张量最小二乘最小化问题minX∥∥X ×1 A(1) ×2 A(2) ×3···×N A(N)−G∥∥的近似解X³,其中G∈RJ1×J2×···×JN, A(i)∈RJi×Ii (i = 1,…)。, N)已知,X∈RI1×I2×···×IN为待逼近的未知张量。我们的方法基于两个步骤。首先,我们将CP或HOSVD分解应用于右侧张量g。其次,我们对每个系数矩阵A(i)(i = 1,…)进行了众所周知的Golub-Kahan双对角化。, N)得到一个简化张量最小二乘最小化问题。这种类型的方程可能出现在彩色图像和视频恢复,我们下面描述。通过数值试验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信