An Evaluation Mechanism for Saliency Functions Used in Localized Image Fusion Quality Metrics

M. Hossny, S. Nahavandi, D. Creighton
{"title":"An Evaluation Mechanism for Saliency Functions Used in Localized Image Fusion Quality Metrics","authors":"M. Hossny, S. Nahavandi, D. Creighton","doi":"10.1109/UKSim.2012.63","DOIUrl":null,"url":null,"abstract":"Image fusion is a proven value adding technique for image analysis. Automated image fusion aims to give the fusion system the ability to select, analyze and evaluate fusion-worthy images. This paper examines the evolution of present techniques used for assessing quality of image fusion operators. It also presents an algorithm that objectively evaluates the realism of saliency functions used in image fusion quality measures. Most image fusion quality metrics depend on estimating the amount of information transferred from each source image into the fused image. This algorithm rebuilds the fused image using the estimated information from each source image and compares it to the original fused image.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2012.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Image fusion is a proven value adding technique for image analysis. Automated image fusion aims to give the fusion system the ability to select, analyze and evaluate fusion-worthy images. This paper examines the evolution of present techniques used for assessing quality of image fusion operators. It also presents an algorithm that objectively evaluates the realism of saliency functions used in image fusion quality measures. Most image fusion quality metrics depend on estimating the amount of information transferred from each source image into the fused image. This algorithm rebuilds the fused image using the estimated information from each source image and compares it to the original fused image.
一种用于局部图像融合质量度量的显著性函数评价机制
图像融合是一种经过验证的图像分析增值技术。自动图像融合旨在使融合系统能够选择、分析和评估具有融合价值的图像。本文研究了目前用于评估图像融合算子质量的技术的发展。提出了一种客观评价图像融合质量度量中显著性函数真实感的算法。大多数图像融合质量指标依赖于估计从每个源图像传输到融合图像的信息量。该算法利用每个源图像的估计信息重建融合图像,并将其与原始融合图像进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信