Identification of MIMO systems using MLP networks: Comparison between SVR and random initialisation

Hajer Zardoum, Nawel Mensia, M. Ksouri
{"title":"Identification of MIMO systems using MLP networks: Comparison between SVR and random initialisation","authors":"Hajer Zardoum, Nawel Mensia, M. Ksouri","doi":"10.1109/ICEESA.2013.6578491","DOIUrl":null,"url":null,"abstract":"Neural network (NN) modelling approach is often used for non-linear system identification. Building a NN for some identification problem starts by choosing its structure and initial weights. There is no exact method to determine the optimal initialisation for a NN, but some authors have used support vector regression (SVR) to initialise a RBFNN which could be considered as a systematic way. This paper presents a SVR initialisation method for Multi-Layer Perceptron (MLP) NN. The proposed method is based on the analogy between NN and SVR to determine the necessary number of hidden neurons and the initial weights for a given modelling precision. Simulation results for multi-input multi-output (MIMO) system show the feasibility and accuracy of the proposed method.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural network (NN) modelling approach is often used for non-linear system identification. Building a NN for some identification problem starts by choosing its structure and initial weights. There is no exact method to determine the optimal initialisation for a NN, but some authors have used support vector regression (SVR) to initialise a RBFNN which could be considered as a systematic way. This paper presents a SVR initialisation method for Multi-Layer Perceptron (MLP) NN. The proposed method is based on the analogy between NN and SVR to determine the necessary number of hidden neurons and the initial weights for a given modelling precision. Simulation results for multi-input multi-output (MIMO) system show the feasibility and accuracy of the proposed method.
用MLP网络识别MIMO系统:SVR与随机初始化的比较
神经网络(NN)建模方法常用于非线性系统辨识。为某些识别问题构建神经网络首先要选择其结构和初始权值。没有确切的方法来确定神经网络的最佳初始化,但一些作者使用支持向量回归(SVR)来初始化RBFNN,这可以被认为是一种系统的方法。提出了一种多层感知器神经网络的SVR初始化方法。该方法基于神经网络和支持向量回归之间的类比来确定给定建模精度所需的隐藏神经元数量和初始权值。多输入多输出(MIMO)系统的仿真结果表明了该方法的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信