{"title":"A Conformal and Transparent Frequency Reconfigurable Water Antenna","authors":"A. Sayem, R. Simorangkir, K. Esselle, J. Buckley","doi":"10.23919/eucap53622.2022.9769462","DOIUrl":null,"url":null,"abstract":"This paper presents a design of water-based flexible, optically transparent and frequency reconfigurable antenna having a unidirectional radiation pattern. The proposed antenna incorporates a dipole radiator on top of a reflector plane that makes the radiation unidirectional. The reflector is constructed from pure water enclosed inside a circular cavity made of polydimethylsiloxane (PDMS), which consists of several ring chambers arranged concentrically. Frequency tuning operation is achieved by an innovative mechanical tuning mechanism involving controlling the water configuration inside the circular cavity. Depending upon the presence or absence of the water in different chambers, the resonance frequency changes accordingly while maintaining the radiation pattern unidirectional. Detail simulation investigation of the proposed technique is presented in this paper.","PeriodicalId":228461,"journal":{"name":"2022 16th European Conference on Antennas and Propagation (EuCAP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eucap53622.2022.9769462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a design of water-based flexible, optically transparent and frequency reconfigurable antenna having a unidirectional radiation pattern. The proposed antenna incorporates a dipole radiator on top of a reflector plane that makes the radiation unidirectional. The reflector is constructed from pure water enclosed inside a circular cavity made of polydimethylsiloxane (PDMS), which consists of several ring chambers arranged concentrically. Frequency tuning operation is achieved by an innovative mechanical tuning mechanism involving controlling the water configuration inside the circular cavity. Depending upon the presence or absence of the water in different chambers, the resonance frequency changes accordingly while maintaining the radiation pattern unidirectional. Detail simulation investigation of the proposed technique is presented in this paper.