EZSL-GAN: EEG-based Zero-Shot Learning approach using a Generative Adversarial Network

Sunhee Hwang, Kibeom Hong, G. Son, H. Byun
{"title":"EZSL-GAN: EEG-based Zero-Shot Learning approach using a Generative Adversarial Network","authors":"Sunhee Hwang, Kibeom Hong, G. Son, H. Byun","doi":"10.1109/IWW-BCI.2019.8737322","DOIUrl":null,"url":null,"abstract":"Recent studies show that deep neural network can be effective for learning EEG-based classification network. In particular, Recurrent Neural Networks (RNN) show competitive performance to learn the sequential information of the EEG signals. However, none of the previous approaches considers recognizing the unknown EEG signals which have never been seen in the training dataset. In this paper, we first propose a new scheme for Zero-Shot EEG signal classification. Our EZSL-GAN has three parts. The first part is an EEG encoder network that generates 128-dim of EEG features using a Gated Recurrent Unit (GRU). The second part is a Generative Adversarial Network (GAN) that can tackle the problem for recognizing unknown EEG labels with a knowledge base. The third part is a simple classification network to learn unseen EEG signals from the fake EEG features which are generated from the learned Generator. We evaluate our method on the EEG dataset evoked from 40 classes visual object stimuli. The experimental results show that our EEG encoder achieves an accuracy of 95.89%. Furthermore, our Zero-Shot EEG classification method reached an accuracy of 39.65% for the ten untrained EEG classes. Our experiments demonstrate that unseen EEG labels can be recognized by the knowledge base.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Recent studies show that deep neural network can be effective for learning EEG-based classification network. In particular, Recurrent Neural Networks (RNN) show competitive performance to learn the sequential information of the EEG signals. However, none of the previous approaches considers recognizing the unknown EEG signals which have never been seen in the training dataset. In this paper, we first propose a new scheme for Zero-Shot EEG signal classification. Our EZSL-GAN has three parts. The first part is an EEG encoder network that generates 128-dim of EEG features using a Gated Recurrent Unit (GRU). The second part is a Generative Adversarial Network (GAN) that can tackle the problem for recognizing unknown EEG labels with a knowledge base. The third part is a simple classification network to learn unseen EEG signals from the fake EEG features which are generated from the learned Generator. We evaluate our method on the EEG dataset evoked from 40 classes visual object stimuli. The experimental results show that our EEG encoder achieves an accuracy of 95.89%. Furthermore, our Zero-Shot EEG classification method reached an accuracy of 39.65% for the ten untrained EEG classes. Our experiments demonstrate that unseen EEG labels can be recognized by the knowledge base.
EZSL-GAN:使用生成对抗网络的基于脑电图的零射击学习方法
近年来的研究表明,深度神经网络可以有效地学习基于脑电图的分类网络。特别是递归神经网络(RNN)在学习脑电信号序列信息方面表现出较好的性能。然而,之前的方法都没有考虑识别训练数据集中从未出现过的未知脑电信号。本文首先提出了一种新的零间隔脑电信号分类方案。我们的EZSL-GAN有三个部分。第一部分是脑电信号编码器网络,该网络使用门控循环单元(GRU)生成128个脑电信号特征。第二部分是生成对抗网络(GAN),利用知识库来解决未知EEG标签的识别问题。第三部分是一个简单的分类网络,从学习到的生成器生成的假脑电信号特征中学习未见的脑电信号。我们在40类视觉物体刺激诱发的脑电图数据集上评估了我们的方法。实验结果表明,该编码器的识别率达到95.89%。此外,我们的零射击脑电分类方法在10个未经训练的脑电类别中达到了39.65%的准确率。实验结果表明,该知识库可以识别未见过的脑电信号标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信