Generalized Simultaneous Perturbation Stochastic Approximation with Reduced Estimator Bias

S. Bhatnagar, Prashanth L.A.
{"title":"Generalized Simultaneous Perturbation Stochastic Approximation with Reduced Estimator Bias","authors":"S. Bhatnagar, Prashanth L.A.","doi":"10.1109/CISS56502.2023.10089720","DOIUrl":null,"url":null,"abstract":"We present in this paper a family of generalized simultaneous perturbation stochastic approximation (G-SPSA) estimators that estimate the gradient of the objective using noisy function measurements, but where the number of function measurements and the form of the gradient estimator is guided by the desired estimator bias. In particular, estimators with more function measurements are seen to result in lower bias. We provide an analysis of convergence of generalized SPSA, and point to possible future directions.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present in this paper a family of generalized simultaneous perturbation stochastic approximation (G-SPSA) estimators that estimate the gradient of the objective using noisy function measurements, but where the number of function measurements and the form of the gradient estimator is guided by the desired estimator bias. In particular, estimators with more function measurements are seen to result in lower bias. We provide an analysis of convergence of generalized SPSA, and point to possible future directions.
估计量偏差减小的广义同时摄动随机逼近
本文提出了一类广义同时摄动随机近似(G-SPSA)估计器,它们使用噪声函数测量来估计目标的梯度,但其中函数测量的数量和梯度估计量的形式是由期望估计量偏差指导的。特别是,具有更多函数测量值的估计器可以产生更低的偏差。本文对广义SPSA的收敛性进行了分析,并指出了可能的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信