Distance-Based Mean Filter for Image Denoising

N. M. Hong, Nguyen Thanh
{"title":"Distance-Based Mean Filter for Image Denoising","authors":"N. M. Hong, Nguyen Thanh","doi":"10.1145/3380688.3380704","DOIUrl":null,"url":null,"abstract":"In this paper, we propose distance-based mean filter (DBMF) to remove the salt and pepper noise. Although DBMF also uses the adaptive conditions like AMF, it uses distance-based mean instead of median. The distance-based mean focuses on similarity of pixels based on distance. It also skips noisy pixels from evaluating new gray value. Hence, DBMF works more effectively than AMF. In the experiments, we test on 20 images of the MATLAB library with various noise levels. We also compare denoising results of DBMF with other similar denoising methods based on the peak signal-to-noise ratio and the structure similarity metrics. The results showed that DBMF can effectively remove noise with various noise levels and outperforms other methods.","PeriodicalId":414793,"journal":{"name":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","volume":"3 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380688.3380704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose distance-based mean filter (DBMF) to remove the salt and pepper noise. Although DBMF also uses the adaptive conditions like AMF, it uses distance-based mean instead of median. The distance-based mean focuses on similarity of pixels based on distance. It also skips noisy pixels from evaluating new gray value. Hence, DBMF works more effectively than AMF. In the experiments, we test on 20 images of the MATLAB library with various noise levels. We also compare denoising results of DBMF with other similar denoising methods based on the peak signal-to-noise ratio and the structure similarity metrics. The results showed that DBMF can effectively remove noise with various noise levels and outperforms other methods.
基于距离的均值滤波图像去噪
在本文中,我们提出了基于距离的均值滤波(DBMF)来去除椒盐噪声。虽然DBMF也使用像AMF这样的自适应条件,但它使用基于距离的均值而不是中值。基于距离的均值关注的是基于距离的像素相似度。它还跳过了评估新灰度值的噪声像素。因此,DBMF比AMF更有效。在实验中,我们对MATLAB库的20幅图像进行了不同噪声水平的测试。我们还基于峰值信噪比和结构相似度指标比较了DBMF与其他类似去噪方法的去噪结果。结果表明,DBMF能有效去除各种噪声水平的噪声,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信