Algebraic characterization of observability in distance-regular consensus networks

A. Kibangou, C. Commault
{"title":"Algebraic characterization of observability in distance-regular consensus networks","authors":"A. Kibangou, C. Commault","doi":"10.1109/CDC.2013.6760064","DOIUrl":null,"url":null,"abstract":"In this paper, we study the observability issue in consensus networks modeled with strongly regular graphs or distance regular graphs. We derive a Kalman-like simple algebraic criterion for observability in distance regular graphs. This criterion consists in evaluating the rank of a matrix built with the components of the Bose-Mesner algebra associated with the considered graph. Then, we state a simple necessary condition of observability based on parameters of the graph, namely the diameter, the degree, and the number of vertices of the graph.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"45 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we study the observability issue in consensus networks modeled with strongly regular graphs or distance regular graphs. We derive a Kalman-like simple algebraic criterion for observability in distance regular graphs. This criterion consists in evaluating the rank of a matrix built with the components of the Bose-Mesner algebra associated with the considered graph. Then, we state a simple necessary condition of observability based on parameters of the graph, namely the diameter, the degree, and the number of vertices of the graph.
距离正则一致网络中可观测性的代数表征
本文研究了用强正则图和距离正则图建模的共识网络的可观察性问题。给出了距离正则图可观测性的一个类似卡尔曼的简单代数判据。这个准则包括评估一个矩阵的秩,这个矩阵是由与所考虑的图相关联的玻色-梅斯纳代数的分量构成的。然后,我们根据图的参数,即图的直径、度和顶点数,给出了一个简单的可观察性的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信