Improvement of hydrological network model using object-based classification based from InfoGain feature selection

Sarah Alma P. Bentir, A. Ballado, Ariel Kelly D. Balan, J. Lazaro
{"title":"Improvement of hydrological network model using object-based classification based from InfoGain feature selection","authors":"Sarah Alma P. Bentir, A. Ballado, Ariel Kelly D. Balan, J. Lazaro","doi":"10.1109/HNICEM.2017.8269440","DOIUrl":null,"url":null,"abstract":"This study aims to cover the gap between the geometry and topology in drainage network classification by creating a model produced using a weighted flow function. The proposed methodology focused on building a model from Object-Based Image Analysis (OBIA) based from the sophisticated parameter to be used as the weight input to morphological analysis. This study performed segmentation evaluation using Area Fit Index. Further, to improve classification performance, this study performed feature selection using InfoGain based from the stratified random sampling in python.","PeriodicalId":104407,"journal":{"name":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2017.8269440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to cover the gap between the geometry and topology in drainage network classification by creating a model produced using a weighted flow function. The proposed methodology focused on building a model from Object-Based Image Analysis (OBIA) based from the sophisticated parameter to be used as the weight input to morphological analysis. This study performed segmentation evaluation using Area Fit Index. Further, to improve classification performance, this study performed feature selection using InfoGain based from the stratified random sampling in python.
基于InfoGain特征选择的基于对象分类的水文网络模型改进
本研究旨在通过创建使用加权流量函数生成的模型来弥补排水网络分类中几何和拓扑之间的差距。该方法的重点是建立基于对象图像分析(OBIA)的模型,该模型基于复杂参数作为形态学分析的权重输入。本研究使用区域拟合指数进行分割评价。此外,为了提高分类性能,本研究使用基于python分层随机抽样的InfoGain进行特征选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信