GLCM texture classification for EEG spectrogram image

M. Mustafa, M. N. Taib, Z. H. Murat, N. Hamid
{"title":"GLCM texture classification for EEG spectrogram image","authors":"M. Mustafa, M. N. Taib, Z. H. Murat, N. Hamid","doi":"10.1109/IECBES.2010.5742264","DOIUrl":null,"url":null,"abstract":"Over the past century, time based and frequency based is used for analyzing Electroencephalography (EEG) signals. EEG is a scientific tool for measure signal from human brain. This paper proposes a time-frequency approach or spectrogram image processing technique for analyzing EEG signals. Gray Level Co-occurrence Matrix (GLCM) texture feature were extracted from spectrogram image and then Principal components analysis (PCA) was employed to reduce the feature dimension. The purpose of this paper is to classify EEG spectrogram image using k-nearest neighbor algorithm (kNN) classifier. The result shows classification rate was 70.83% for EEG spectrogram image.","PeriodicalId":241343,"journal":{"name":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES.2010.5742264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Over the past century, time based and frequency based is used for analyzing Electroencephalography (EEG) signals. EEG is a scientific tool for measure signal from human brain. This paper proposes a time-frequency approach or spectrogram image processing technique for analyzing EEG signals. Gray Level Co-occurrence Matrix (GLCM) texture feature were extracted from spectrogram image and then Principal components analysis (PCA) was employed to reduce the feature dimension. The purpose of this paper is to classify EEG spectrogram image using k-nearest neighbor algorithm (kNN) classifier. The result shows classification rate was 70.83% for EEG spectrogram image.
脑电波谱图的GLCM纹理分类
在过去的一个世纪里,基于时间和基于频率的方法被用于分析脑电图(EEG)信号。脑电图是一种测量人脑信号的科学工具。本文提出了一种分析脑电图信号的时频法或谱图图像处理技术。从光谱图图像中提取灰度共生矩阵(GLCM)纹理特征,然后利用主成分分析(PCA)对特征维数进行降维。本文的目的是利用k-最近邻算法(kNN)分类器对脑电频谱图像进行分类。结果表明,脑电图图像的分类率为70.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信