C.C. Cheng, Y.H. Chen, C. Wang, C. Cheng, C.W. Lee, T.W. Lin, S. Ku, Y.W. Chang, W. Tsai, T. Lu, K.C. Chen, Tahui Wang, Chih-Yuan Lu
{"title":"RTN modulation by neighboring word-line Vt level in 1Xnm floating gate NAND strings","authors":"C.C. Cheng, Y.H. Chen, C. Wang, C. Cheng, C.W. Lee, T.W. Lin, S. Ku, Y.W. Chang, W. Tsai, T. Lu, K.C. Chen, Tahui Wang, Chih-Yuan Lu","doi":"10.1109/VLSI-TSA.2018.8403858","DOIUrl":null,"url":null,"abstract":"Impact of threshold voltage (Vt) level from the cells at neighboring word-lines (WLs) on random telegraph noise (RTN) in floating-gate (FG) NAND flash memory is investigated. Due to aggressive pitch scaling, two-step programming is utilized to suppress the cell-to-cell interference and to achieve multi-level-cell (MLC) operation [1,2]. Such scheme could compromise the interference to get optimized Vt distributions at selected WL (sel-WL) even if the cells at the adjacent WLs reveal various Vt states. Once the neighboring WL keeps at low-Vt state, a compact RTN distribution is obtained. TCAD device simulation putting different stored charges to modulate the adjacent equivalent pass gate voltage (equi-Vpass), further confirms that RTN variation strongly correlates to the conduction current path beneath the sel-WLs. The reduction of RTN influence by increasing the equi-Vpass is then demonstrated. Finally, the optimal source/drain dosage range would be determined.","PeriodicalId":209993,"journal":{"name":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2018.8403858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Impact of threshold voltage (Vt) level from the cells at neighboring word-lines (WLs) on random telegraph noise (RTN) in floating-gate (FG) NAND flash memory is investigated. Due to aggressive pitch scaling, two-step programming is utilized to suppress the cell-to-cell interference and to achieve multi-level-cell (MLC) operation [1,2]. Such scheme could compromise the interference to get optimized Vt distributions at selected WL (sel-WL) even if the cells at the adjacent WLs reveal various Vt states. Once the neighboring WL keeps at low-Vt state, a compact RTN distribution is obtained. TCAD device simulation putting different stored charges to modulate the adjacent equivalent pass gate voltage (equi-Vpass), further confirms that RTN variation strongly correlates to the conduction current path beneath the sel-WLs. The reduction of RTN influence by increasing the equi-Vpass is then demonstrated. Finally, the optimal source/drain dosage range would be determined.