FeatureExplorer: Interactive Feature Selection and Exploration of Regression Models for Hyperspectral Images

Jieqiong Zhao, M. Karimzadeh, A. Masjedi, Taojun Wang, Xiwen Zhang, M. Crawford, D. Ebert
{"title":"FeatureExplorer: Interactive Feature Selection and Exploration of Regression Models for Hyperspectral Images","authors":"Jieqiong Zhao, M. Karimzadeh, A. Masjedi, Taojun Wang, Xiwen Zhang, M. Crawford, D. Ebert","doi":"10.1109/VISUAL.2019.8933619","DOIUrl":null,"url":null,"abstract":"Feature selection is used in machine learning to improve predictions, decrease computation time, reduce noise, and tune models based on limited sample data. In this article, we present FeatureExplorer, a visual analytics system that supports the dynamic evaluation of regression models and importance of feature subsets through the interactive selection of features in high-dimensional feature spaces typical of hyperspectral images. The interactive system allows users to iteratively refine and diagnose the model by selecting features based on their domain knowledge, interchangeable (correlated) features, feature importance, and the resulting model performance.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"114 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Feature selection is used in machine learning to improve predictions, decrease computation time, reduce noise, and tune models based on limited sample data. In this article, we present FeatureExplorer, a visual analytics system that supports the dynamic evaluation of regression models and importance of feature subsets through the interactive selection of features in high-dimensional feature spaces typical of hyperspectral images. The interactive system allows users to iteratively refine and diagnose the model by selecting features based on their domain knowledge, interchangeable (correlated) features, feature importance, and the resulting model performance.
Feature explorer:高光谱图像的交互式特征选择和回归模型探索
特征选择在机器学习中用于改进预测,减少计算时间,减少噪声,并基于有限的样本数据调整模型。在本文中,我们介绍了一个可视化分析系统FeatureExplorer,该系统通过交互式选择高光谱图像的高维特征空间中的特征来支持回归模型的动态评估和特征子集的重要性。交互系统允许用户根据他们的领域知识、可互换的(相关的)特征、特征的重要性和最终的模型性能来选择特征,从而迭代地改进和诊断模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信