CatMat: 3D Object Recognition Using Catenarian Matching

Máté Michelisz, D. Varga, J. Szalai-Gindl
{"title":"CatMat: 3D Object Recognition Using Catenarian Matching","authors":"Máté Michelisz, D. Varga, J. Szalai-Gindl","doi":"10.1109/CITDS54976.2022.9914341","DOIUrl":null,"url":null,"abstract":"Object recognition in 3D point clouds is an important and widely researched topic. We propose a novel method based on local point descriptors. We detect edge points on the scene and object clouds, and construct a weighted edge graph on the object clouds. We find point chains on the objects based on the constructed graph, and seek similar point chains on the scene cloud using local descriptor matching and geometric constraints. We estimate transformations using corresponding point chains, and validate the transformations with a voxel-based method. Our method is capable of multi-instance object recognition. In this paper we present our method and compare it with a similar solution. Based on our evaluation, the proposed method is able to find various objects on scene clouds and robust to noise.","PeriodicalId":271992,"journal":{"name":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITDS54976.2022.9914341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object recognition in 3D point clouds is an important and widely researched topic. We propose a novel method based on local point descriptors. We detect edge points on the scene and object clouds, and construct a weighted edge graph on the object clouds. We find point chains on the objects based on the constructed graph, and seek similar point chains on the scene cloud using local descriptor matching and geometric constraints. We estimate transformations using corresponding point chains, and validate the transformations with a voxel-based method. Our method is capable of multi-instance object recognition. In this paper we present our method and compare it with a similar solution. Based on our evaluation, the proposed method is able to find various objects on scene clouds and robust to noise.
CatMat:使用Catenarian匹配的3D物体识别
三维点云中的目标识别是一个重要而广泛研究的课题。提出了一种基于局部点描述子的方法。我们在场景云和目标云上检测边缘点,并在目标云上构造加权边缘图。基于构造好的图在物体上寻找点链,并利用局部描述符匹配和几何约束在场景云上寻找相似点链。我们使用相应的点链估计变换,并使用基于体素的方法验证变换。该方法具有多实例目标识别的能力。在本文中,我们提出了我们的方法,并与一个类似的解决方案进行了比较。根据我们的评估,该方法能够在场景云中找到各种目标,并且对噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信