Optimal Subspace Estimation in Radar Signal Processing

K. Adhikari, R. Vaccaro, Ridhab K. Al Kinani
{"title":"Optimal Subspace Estimation in Radar Signal Processing","authors":"K. Adhikari, R. Vaccaro, Ridhab K. Al Kinani","doi":"10.1109/RadarConf2351548.2023.10149565","DOIUrl":null,"url":null,"abstract":"Many space-time adaptive signal processing algorithms rely on the estimates of the bases of signal and noise subspaces. Traditionally, these bases' estimates are formed using singular vectors of the data matrix or eigenvectors of the sample covariance matrix. These estimates are not very accurate and their use in subspace-based algorithms yield high errors. We present bases' estimates that are optimal to first order term in the noise matrix. The use of the first order optimal bases leads to significant improvement in the outcomes of subspace-based signal processing algorithms.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many space-time adaptive signal processing algorithms rely on the estimates of the bases of signal and noise subspaces. Traditionally, these bases' estimates are formed using singular vectors of the data matrix or eigenvectors of the sample covariance matrix. These estimates are not very accurate and their use in subspace-based algorithms yield high errors. We present bases' estimates that are optimal to first order term in the noise matrix. The use of the first order optimal bases leads to significant improvement in the outcomes of subspace-based signal processing algorithms.
雷达信号处理中的最优子空间估计
许多时空自适应信号处理算法依赖于信号和噪声子空间基的估计。传统上,这些基的估计是使用数据矩阵的奇异向量或样本协方差矩阵的特征向量形成的。这些估计不是很准确,并且在基于子空间的算法中使用它们会产生很高的误差。我们提出了对噪声矩阵中一阶项最优的基估计。一阶最优基的使用显著改善了基于子空间的信号处理算法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信