3D Objects Recognition Using Artificial Neural Networks

D. Correa, F. Osório
{"title":"3D Objects Recognition Using Artificial Neural Networks","authors":"D. Correa, F. Osório","doi":"10.1109/CLEI.2018.00042","DOIUrl":null,"url":null,"abstract":"The recent advances in computational processing and the low prices of sensors able to capture three-dimensional information have contributed for the progress of computer vision researches involving 3D data and 3D images. Object recognition allows us to develop complex applications for intelligent mobile robotics, augmented reality, systems for the visually impaired, among other applications. In this context, this paper presents a method for recognizing and classifying objects which are represented in three dimensions through depth maps. The data used in this study comes from the \"UW RGB-D Object Dataset\" from University of Washington, which is available online and is largely used to evaluate 3D object classifiers. This object database is composed of depth maps captured by the Microsoft's Kinect sensor. The obtained results are promising and contribute positively to the computer vision area.","PeriodicalId":263586,"journal":{"name":"Latin American Computing Conference / Conferencia Latinoamericana En Informatica","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Computing Conference / Conferencia Latinoamericana En Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recent advances in computational processing and the low prices of sensors able to capture three-dimensional information have contributed for the progress of computer vision researches involving 3D data and 3D images. Object recognition allows us to develop complex applications for intelligent mobile robotics, augmented reality, systems for the visually impaired, among other applications. In this context, this paper presents a method for recognizing and classifying objects which are represented in three dimensions through depth maps. The data used in this study comes from the "UW RGB-D Object Dataset" from University of Washington, which is available online and is largely used to evaluate 3D object classifiers. This object database is composed of depth maps captured by the Microsoft's Kinect sensor. The obtained results are promising and contribute positively to the computer vision area.
基于人工神经网络的三维物体识别
近年来,计算处理技术的进步和能够捕获三维信息的传感器的低价格,促进了涉及三维数据和三维图像的计算机视觉研究的进步。物体识别使我们能够开发智能移动机器人、增强现实、视障人士系统等复杂应用。在此背景下,本文提出了一种利用深度图对三维物体进行识别和分类的方法。本研究中使用的数据来自华盛顿大学的“UW RGB-D对象数据集”,该数据集可在线获取,主要用于评估3D对象分类器。该对象数据库由微软Kinect传感器捕获的深度图组成。所得结果是有希望的,对计算机视觉领域有积极的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信