Activity recognition in unconstrained RGB-D video using 3D trajectories

Yang Xiao, Gangqiang Zhao, Junsong Yuan, D. Thalmann
{"title":"Activity recognition in unconstrained RGB-D video using 3D trajectories","authors":"Yang Xiao, Gangqiang Zhao, Junsong Yuan, D. Thalmann","doi":"10.1145/2668956.2668961","DOIUrl":null,"url":null,"abstract":"Human activity recognition in unconstrained RGB--D videos has extensive applications in surveillance, multimedia data analytics, human-computer interaction, etc, but remains a challenging problem due to the background clutter, camera motion, viewpoint changes, etc. We develop a novel RGB--D activity recognition approach that leverages the dense trajectory feature in RGB videos. By mapping the 2D positions of the dense trajectories from RGB video to the corresponding positions in the depth video, we can recover the 3D trajectory of the tracked interest points, which captures important motion information along the depth direction. To characterize the 3D trajectories, we apply motion boundary histogram (MBH) to depth direction and propose 3D trajectory shape descriptors. Our proposed 3D trajectory feature is a good complementary to dense trajectory feature extracted from RGB video only. The performance evaluation on a challenging unconstrained RGB--D activity recognition dataset, i.e., Hollywood 3D, shows that our proposed method outperforms the baseline methods (STIP-based) significantly, and achieves the state-of-the-art performance.","PeriodicalId":220010,"journal":{"name":"SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668956.2668961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Human activity recognition in unconstrained RGB--D videos has extensive applications in surveillance, multimedia data analytics, human-computer interaction, etc, but remains a challenging problem due to the background clutter, camera motion, viewpoint changes, etc. We develop a novel RGB--D activity recognition approach that leverages the dense trajectory feature in RGB videos. By mapping the 2D positions of the dense trajectories from RGB video to the corresponding positions in the depth video, we can recover the 3D trajectory of the tracked interest points, which captures important motion information along the depth direction. To characterize the 3D trajectories, we apply motion boundary histogram (MBH) to depth direction and propose 3D trajectory shape descriptors. Our proposed 3D trajectory feature is a good complementary to dense trajectory feature extracted from RGB video only. The performance evaluation on a challenging unconstrained RGB--D activity recognition dataset, i.e., Hollywood 3D, shows that our proposed method outperforms the baseline methods (STIP-based) significantly, and achieves the state-of-the-art performance.
使用3D轨迹的无约束RGB-D视频中的活动识别
无约束RGB- D视频中的人体活动识别在监控、多媒体数据分析、人机交互等方面有着广泛的应用,但由于背景杂乱、摄像机运动、视点变化等原因,仍然是一个具有挑战性的问题。我们开发了一种新的RGB- D活动识别方法,该方法利用了RGB视频中的密集轨迹特征。通过将RGB视频中密集轨迹的二维位置映射到深度视频中的相应位置,我们可以恢复跟踪兴趣点的三维轨迹,从而捕获沿深度方向的重要运动信息。为了描述三维轨迹,我们将运动边界直方图(MBH)应用于深度方向,并提出了三维轨迹形状描述符。本文提出的三维轨迹特征是对仅从RGB视频中提取的密集轨迹特征的良好补充。在一个具有挑战性的无约束RGB- D活动识别数据集(即好莱坞3D)上的性能评估表明,我们提出的方法明显优于基线方法(基于stp的),并达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信