PAAS

Chenglei Wu, Zhi Wang, Lifeng Sun
{"title":"PAAS","authors":"Chenglei Wu, Zhi Wang, Lifeng Sun","doi":"10.1145/3458306.3460995","DOIUrl":null,"url":null,"abstract":"Conventional tile-based 360° video streaming methods, including deep reinforcement learning (DRL) based, ignore the interactive nature of 360° video streaming and download tiles following fixed sequential orders, thus failing to respond to the user's head motion changes. We show that these existing solutions suffer from either the prefetch accuracy or the playback stability drop. Furthermore, these methods are constrained to serve only one fixed streaming preference, causing extra training overhead and the lack of generalization on unseen preferences. In this paper, we propose a dual-queue streaming framework, with accuracy and stability purposes respectively, to enable the DRL agent to determine and change the tile download order without incurring overhead. We also design a preference-aware DRL algorithm to incentivize the agent to learn preference-dependent ABR decisions efficiently. Compared with state-of-the-art DRL baselines, our method not only significantly improves the streaming quality, e.g., increasing the average streaming quality by 13.6% on a public dataset, but also demonstrates better performance and generalization under dynamic preferences, e.g., an average quality improvement of 19.9% on unseen preferences.","PeriodicalId":429348,"journal":{"name":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458306.3460995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventional tile-based 360° video streaming methods, including deep reinforcement learning (DRL) based, ignore the interactive nature of 360° video streaming and download tiles following fixed sequential orders, thus failing to respond to the user's head motion changes. We show that these existing solutions suffer from either the prefetch accuracy or the playback stability drop. Furthermore, these methods are constrained to serve only one fixed streaming preference, causing extra training overhead and the lack of generalization on unseen preferences. In this paper, we propose a dual-queue streaming framework, with accuracy and stability purposes respectively, to enable the DRL agent to determine and change the tile download order without incurring overhead. We also design a preference-aware DRL algorithm to incentivize the agent to learn preference-dependent ABR decisions efficiently. Compared with state-of-the-art DRL baselines, our method not only significantly improves the streaming quality, e.g., increasing the average streaming quality by 13.6% on a public dataset, but also demonstrates better performance and generalization under dynamic preferences, e.g., an average quality improvement of 19.9% on unseen preferences.
PAAS
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信