Classification of computer viruses from binary code using ensemble classifier and recursive feature elimination

Prasit Usaphapanus, K. Piromsopa
{"title":"Classification of computer viruses from binary code using ensemble classifier and recursive feature elimination","authors":"Prasit Usaphapanus, K. Piromsopa","doi":"10.1109/ICDIM.2017.8244670","DOIUrl":null,"url":null,"abstract":"This paper proposes a supervised machine learning model for detecting (unseen) viruses files. Our main focus is on static analysis approach. To find the best method, we experiment with difference types of feature extraction and three classifier algorithms including extreme gradient boosting, random forest and multilayer perceptron. Our data set contains 6,319 executable files. Each file is extracted with objdump and sorted with TF-IDF score to find best features. The F1 score shows slightly better performance than those of the baselines. Random forest with 20 attributes yields 0.9379758 F1 score which is 0.0316167 more than that of the baseline. The extreme gradient boosting method with 500 attributes achieve 0.9628991 F1 score, 0.0418642 more than that of the baseline. We conclude that our approach can improve the precision and recall of the classification.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a supervised machine learning model for detecting (unseen) viruses files. Our main focus is on static analysis approach. To find the best method, we experiment with difference types of feature extraction and three classifier algorithms including extreme gradient boosting, random forest and multilayer perceptron. Our data set contains 6,319 executable files. Each file is extracted with objdump and sorted with TF-IDF score to find best features. The F1 score shows slightly better performance than those of the baselines. Random forest with 20 attributes yields 0.9379758 F1 score which is 0.0316167 more than that of the baseline. The extreme gradient boosting method with 500 attributes achieve 0.9628991 F1 score, 0.0418642 more than that of the baseline. We conclude that our approach can improve the precision and recall of the classification.
基于集成分类器和递归特征消去的计算机病毒二进制码分类
本文提出了一种用于检测(看不见的)病毒文件的监督机器学习模型。我们主要关注的是静态分析方法。为了找到最好的方法,我们实验了不同类型的特征提取和三种分类器算法,包括极端梯度增强、随机森林和多层感知器。我们的数据集包含6319个可执行文件。使用objdump提取每个文件,并使用TF-IDF分数对其进行排序,以找到最佳特征。F1分数显示的性能略好于基线。具有20个属性的随机森林的F1得分为0.9379758,比基线提高了0.0316167。500个属性的极端梯度增强方法F1得分为0.9628991,比基线提高0.0418642。我们的结论是,我们的方法可以提高分类的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信