Shape Estimation of Concentric Tube Robots Using Single Point Position Measurement

Emile Mackute, Balint Thamo, Kimran Dhaliwal, Mohsen Khadem
{"title":"Shape Estimation of Concentric Tube Robots Using Single Point Position Measurement","authors":"Emile Mackute, Balint Thamo, Kimran Dhaliwal, Mohsen Khadem","doi":"10.1109/IROS47612.2022.9982174","DOIUrl":null,"url":null,"abstract":"Accurate shape estimation of concentric tube robots (CTRs) using mathematical models remains a challenge, reinforcing the need to develop techniques for accurate and real-time shape sensing of CTRs. In this paper, we develop a fusion algorithm that predicts the robot's shape by combining a mathematical model of the CTR with a measurement of the Cartesian coordinates of the robot's tip using an electro-magnetic sensor. We experimentally validated our method in static and dynamic scenarios with and without external loading. Results demonstrated that the fusion algorithm improves the error of model-based shape prediction by an average of 44.3%, corresponding to 2.43% of the robot's arc length. Furthermore, we demonstrate that our method can be used in real-time to simultaneously track the robot's tip position and predict its shape.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9982174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate shape estimation of concentric tube robots (CTRs) using mathematical models remains a challenge, reinforcing the need to develop techniques for accurate and real-time shape sensing of CTRs. In this paper, we develop a fusion algorithm that predicts the robot's shape by combining a mathematical model of the CTR with a measurement of the Cartesian coordinates of the robot's tip using an electro-magnetic sensor. We experimentally validated our method in static and dynamic scenarios with and without external loading. Results demonstrated that the fusion algorithm improves the error of model-based shape prediction by an average of 44.3%, corresponding to 2.43% of the robot's arc length. Furthermore, we demonstrate that our method can be used in real-time to simultaneously track the robot's tip position and predict its shape.
基于单点位置测量的同心管机器人形状估计
利用数学模型对同心管机器人(CTRs)进行精确的形状估计仍然是一个挑战,这加强了对CTRs精确和实时形状感知技术的开发需求。在本文中,我们开发了一种融合算法,通过将CTR的数学模型与使用电磁传感器测量机器人尖端的笛卡尔坐标相结合来预测机器人的形状。我们通过实验验证了我们的方法在静态和动态情况下,有和没有外部负载。结果表明,融合算法将基于模型的形状预测误差平均提高了44.3%,相当于机器人弧长的2.43%。此外,我们证明了我们的方法可以实时地同时跟踪机器人的尖端位置和预测其形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信