Generative Adversarial Networks for Classification

S. Israel, J. Goldstein, Jeffrey Klein, J. Talamonti, Franklin R. Tanner, Shane Zabel, Phil Sallee, Lisa McCoy
{"title":"Generative Adversarial Networks for Classification","authors":"S. Israel, J. Goldstein, Jeffrey Klein, J. Talamonti, Franklin R. Tanner, Shane Zabel, Phil Sallee, Lisa McCoy","doi":"10.1109/AIPR.2017.8457952","DOIUrl":null,"url":null,"abstract":"Our team is reviewing tools and techniques that enable rapid prototyping. Generative Adversarial Networks (GANs) have been shown to reduce training requirements for detection problems. GANs compete generative and discriminative classifiers to improve detection performance. This paper expands the use of GANs from detection (k=2) to classification (k>2) problems. Several GAN network structures and training set sizes were compared to the baseline discriminative network and Bayes' classifiers. The results show no significant performance differences among any of the network configurations or training set size trials. However, the GANs trained with fewer network nodes and iterations than needed by the discriminator classifiers alone.","PeriodicalId":128779,"journal":{"name":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2017.8457952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Our team is reviewing tools and techniques that enable rapid prototyping. Generative Adversarial Networks (GANs) have been shown to reduce training requirements for detection problems. GANs compete generative and discriminative classifiers to improve detection performance. This paper expands the use of GANs from detection (k=2) to classification (k>2) problems. Several GAN network structures and training set sizes were compared to the baseline discriminative network and Bayes' classifiers. The results show no significant performance differences among any of the network configurations or training set size trials. However, the GANs trained with fewer network nodes and iterations than needed by the discriminator classifiers alone.
分类生成对抗网络
我们的团队正在审查能够实现快速原型的工具和技术。生成对抗网络(GANs)已被证明可以减少检测问题的训练要求。gan与生成分类器和判别分类器竞争以提高检测性能。本文将gan的应用从检测(k=2)扩展到分类(k>2)问题。将几种GAN网络结构和训练集大小与基线判别网络和贝叶斯分类器进行比较。结果显示,在任何网络配置或训练集大小的试验中,性能都没有显著差异。然而,与单独的判别器分类器相比,gan训练所需的网络节点和迭代次数更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信