ReDESK: A Reconfigurable Dataflow Engine for Sparse Kernels on Heterogeneous Platforms

Kai Lu, Zhaoshi Li, Leibo Liu, Jiawei Wang, S. Yin, Shaojun Wei
{"title":"ReDESK: A Reconfigurable Dataflow Engine for Sparse Kernels on Heterogeneous Platforms","authors":"Kai Lu, Zhaoshi Li, Leibo Liu, Jiawei Wang, S. Yin, Shaojun Wei","doi":"10.1109/iccad45719.2019.8942089","DOIUrl":null,"url":null,"abstract":"Sparse Matrix-Vector Multiplication (SpMV) is the most important sparse linear algebra kernel in both scientific and engineering applications. Due to its irregular control flow and data access pattern, Von Neumann architectures like CPUs and GPUs cannot fully exploit the inherent parallelism of $S$ pMV. Although FPGAs can efficiently accelerate SpMV in a dataflow manner, their performance is degraded in face of large matrices that exceed the capacity of on-chip memory because of excessive rescheduling of data. In this paper we propose ReDESK, a Reconfigurable Dataflow Engine for Sparse Kernels, for emerging tightly-coupled CPU-FPGA heterogeneous platforms. To fully exploit the heterogeneity, we design a novel representation of sparse matrix that is tailored for data prefetching on CPU-side and streaming processing on FPGA-side. In this way ReDESK can fully utilize the memory bandwidth regardless of the scale of SpMV problem. We evaluate ReDESK on Intel HARP-2 platform with a set of matrices from the University of Florida sparse matrix collection. The result demonstrates an average bandwidth utilization of 0.094 GFLOP/GB, which is 1.6-4.3x more efficient than previous SpMV on FPGAs.","PeriodicalId":363364,"journal":{"name":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccad45719.2019.8942089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sparse Matrix-Vector Multiplication (SpMV) is the most important sparse linear algebra kernel in both scientific and engineering applications. Due to its irregular control flow and data access pattern, Von Neumann architectures like CPUs and GPUs cannot fully exploit the inherent parallelism of $S$ pMV. Although FPGAs can efficiently accelerate SpMV in a dataflow manner, their performance is degraded in face of large matrices that exceed the capacity of on-chip memory because of excessive rescheduling of data. In this paper we propose ReDESK, a Reconfigurable Dataflow Engine for Sparse Kernels, for emerging tightly-coupled CPU-FPGA heterogeneous platforms. To fully exploit the heterogeneity, we design a novel representation of sparse matrix that is tailored for data prefetching on CPU-side and streaming processing on FPGA-side. In this way ReDESK can fully utilize the memory bandwidth regardless of the scale of SpMV problem. We evaluate ReDESK on Intel HARP-2 platform with a set of matrices from the University of Florida sparse matrix collection. The result demonstrates an average bandwidth utilization of 0.094 GFLOP/GB, which is 1.6-4.3x more efficient than previous SpMV on FPGAs.
ReDESK:异构平台上稀疏核的可重构数据流引擎
稀疏矩阵向量乘法(SpMV)是科学和工程应用中最重要的稀疏线性代数核。由于其不规则的控制流和数据访问模式,像cpu和gpu这样的Von Neumann架构不能充分利用$S$ pMV固有的并行性。虽然fpga可以有效地以数据流的方式加速SpMV,但面对超过片上存储器容量的大矩阵时,由于数据的过度重调度,其性能会下降。在本文中,我们提出了ReDESK,一个稀疏内核的可重构数据流引擎,用于新兴的紧密耦合CPU-FPGA异构平台。为了充分利用异构性,我们设计了一种新的稀疏矩阵表示,该表示专门用于cpu端的数据预取和fpga端的流处理。这样,无论SpMV问题的规模如何,ReDESK都可以充分利用内存带宽。我们使用来自佛罗里达大学稀疏矩阵集合的一组矩阵在Intel HARP-2平台上对ReDESK进行了评估。结果表明,平均带宽利用率为0.094 GFLOP/GB,比以前fpga上的SpMV效率高1.6-4.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信