Stability of feedback systems using dual Nyquist diagram

Paul H. Jones
{"title":"Stability of feedback systems using dual Nyquist diagram","authors":"Paul H. Jones","doi":"10.1109/TCT.1954.6373356","DOIUrl":null,"url":null,"abstract":"This paper introduces a procedure for determing the stability of a feedback system using a dual Nyquist diagram. Such a diagram results when the characteristic equation of the system is interpreted to be the sum of two frequency-dependent functions F1(p) + F2(p) instead of the normal expression 1 + G(p)H(p). This diagram then consists of two polar plots; one plot represents the locus of one of the functions which is contained in the characteristic equation, and the other plot is the negative locus of the other function contained in the characteristic equation. Each of these curves may, if desired, be considered as an individual Nyquist diagram.","PeriodicalId":232856,"journal":{"name":"IRE Transactions on Circuit Theory","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1954-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRE Transactions on Circuit Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCT.1954.6373356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a procedure for determing the stability of a feedback system using a dual Nyquist diagram. Such a diagram results when the characteristic equation of the system is interpreted to be the sum of two frequency-dependent functions F1(p) + F2(p) instead of the normal expression 1 + G(p)H(p). This diagram then consists of two polar plots; one plot represents the locus of one of the functions which is contained in the characteristic equation, and the other plot is the negative locus of the other function contained in the characteristic equation. Each of these curves may, if desired, be considered as an individual Nyquist diagram.
利用对偶奈奎斯特图研究反馈系统的稳定性
本文介绍了用对偶奈奎斯特图确定反馈系统稳定性的方法。当将系统的特征方程解释为两个频率相关函数F1(p) + F2(p)的和而不是正常表达式1 + G(p)H(p)时,就会得到这样的图。这个图由两个极坐标图组成;一个图表示特征方程中包含的一个函数的轨迹,另一个图表示特征方程中包含的另一个函数的负轨迹。如果需要,这些曲线中的每一条都可以看作是一个单独的奈奎斯特图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信