Kinematic and dynamic adaptive control of a nonholonomic mobile robot using a RNN

Mohamed Oubbati, M. Schanz, P. Levi
{"title":"Kinematic and dynamic adaptive control of a nonholonomic mobile robot using a RNN","authors":"Mohamed Oubbati, M. Schanz, P. Levi","doi":"10.1109/CIRA.2005.1554250","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive neurocontrol system with two levels is proposed for the motion control of a nonholonomic mobile robot. In the first level, a recurrent network improves the robustness of a kinematic controller and generates linear and angular velocities, necessary to track a reference trajectory. In the second level, another network converts the desired velocities, provided by the first level, into a torque control. The advantage of the control approach is that, no knowledge about the dynamic model is required, and no synaptic weight changing is needed in presence of robot's parameters variation. This capability is acquired through prior 'meta-learning'. Simulation results are demonstrated to validate the robustness of the proposed approach.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, an adaptive neurocontrol system with two levels is proposed for the motion control of a nonholonomic mobile robot. In the first level, a recurrent network improves the robustness of a kinematic controller and generates linear and angular velocities, necessary to track a reference trajectory. In the second level, another network converts the desired velocities, provided by the first level, into a torque control. The advantage of the control approach is that, no knowledge about the dynamic model is required, and no synaptic weight changing is needed in presence of robot's parameters variation. This capability is acquired through prior 'meta-learning'. Simulation results are demonstrated to validate the robustness of the proposed approach.
基于RNN的非完整移动机器人运动学与动态自适应控制
针对非完整移动机器人的运动控制问题,提出了一种两级自适应神经控制系统。在第一级,循环网络提高了运动控制器的鲁棒性,并生成了跟踪参考轨迹所必需的线速度和角速度。在第二级,另一个网络将第一级提供的所需速度转换为转矩控制。该控制方法的优点是不需要了解动力学模型,并且不需要在机器人参数变化时改变突触权值。这种能力是通过先前的“元学习”获得的。仿真结果验证了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信