Data Augmentation for Foreign Material Discrimination using Deep Learning

Tomoya Teragaki, Shingo Kawahito, Fuminori Kimura, Osamu Honda
{"title":"Data Augmentation for Foreign Material Discrimination using Deep Learning","authors":"Tomoya Teragaki, Shingo Kawahito, Fuminori Kimura, Osamu Honda","doi":"10.1109/IIAI-AAI50415.2020.00126","DOIUrl":null,"url":null,"abstract":"The authors try to discriminate small foreign materials using a convolution neural network (CNN). In this paper, the authors verify the effects of data augmentation for discriminating small foreign materials. The authors experimented for three target foreign materials, woodchips, pieces of plastic and cymothoidaes. The authors measured accuracy of discrimination for foreign materials without data augmentation and with it. The results of the experiment proved that data augmentation contributed to improvement in accuracy of discrimination for small foreign materials.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors try to discriminate small foreign materials using a convolution neural network (CNN). In this paper, the authors verify the effects of data augmentation for discriminating small foreign materials. The authors experimented for three target foreign materials, woodchips, pieces of plastic and cymothoidaes. The authors measured accuracy of discrimination for foreign materials without data augmentation and with it. The results of the experiment proved that data augmentation contributed to improvement in accuracy of discrimination for small foreign materials.
基于深度学习的外来物质鉴别数据增强
作者尝试使用卷积神经网络(CNN)来区分小的异物。在本文中,作者验证了数据增强对鉴别小异物的效果。作者实验了三种目标外来材料,木片,塑料片和cymothoidae。作者分别在没有数据增强的情况下和有数据增强的情况下测量了异物识别的准确性。实验结果表明,数据增强有助于提高小异物的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信