Exploring the Influencing Factors for Infant Mortality: A Mixed-Method Study of 24 Developing Countries Based on Demographic and Health Survey data

M. Islam, T. Tabassum, M. Moni
{"title":"Exploring the Influencing Factors for Infant Mortality: A Mixed-Method Study of 24 Developing Countries Based on Demographic and Health Survey data","authors":"M. Islam, T. Tabassum, M. Moni","doi":"10.22541/AU.161339107.78630272/V1","DOIUrl":null,"url":null,"abstract":"Objective: This study aimed to discover the prevalence of infant\nmortality and to assess how different factors influence infant mortality\nin 24 developing countries by utilizing the latest DHS data. Methods:\nThis study used a mixed-method design to assemble cross-sectional\nstudies to integrate data from 24 other countries due to a widening\nperspective of infant mortality. Most recent available DHS data of 24\ndifferent developing countries from the year 2013 to 2019 was used to\nconduct the study. Descriptive analysis, binary logistic regression\nmodel, random-effect meta-analysis, and forest plot have been used for\nthe final analyses. Results: Binary logistic regression model revealed\nfor Bangladesh that, higher education level of fathers (OR: 0.344, 95%\nCI: 0.147; 0.807), being 2nd born or above order infant (OR: 0.362, 95%\nCI: 0.248, 0.527), taking ANC (OR: 0.271, 95% CI: 0.192; 0.382 for 1-4\nvisits), taking PNC (OR: 0.303, 95% CI: 0.216; 0.425) were\nstatistically significant determinants of lowering infant death. While\ncarrying multiple fetus (OR: 6.634, 95% CI: 3.247; 13.555) was exposed\nas a risk factor of infant mortality. Most significant factors\ninfluencing infant mortality for all 24 developing countries were number\nof fetus (OR: 0.193, 95% CI: 0.176; 0.213), taking ANC (OR: 0.356, 95%\nCI: 0.311; 0.407) and taking PNC (OR: 0.302, 95% CI: 0.243; 0.375).\nConclusion In this study, the number of the fetus, taking ANC and PNC,\nwas the most significant factor affecting the risk of infant mortality\nin developing countries. So, anticipation and control projects ought to\nbe taken in the field in regard to these hazard factors.","PeriodicalId":305591,"journal":{"name":"Family Medicine & Primary Care Review","volume":"6 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Family Medicine & Primary Care Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/AU.161339107.78630272/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to discover the prevalence of infant mortality and to assess how different factors influence infant mortality in 24 developing countries by utilizing the latest DHS data. Methods: This study used a mixed-method design to assemble cross-sectional studies to integrate data from 24 other countries due to a widening perspective of infant mortality. Most recent available DHS data of 24 different developing countries from the year 2013 to 2019 was used to conduct the study. Descriptive analysis, binary logistic regression model, random-effect meta-analysis, and forest plot have been used for the final analyses. Results: Binary logistic regression model revealed for Bangladesh that, higher education level of fathers (OR: 0.344, 95% CI: 0.147; 0.807), being 2nd born or above order infant (OR: 0.362, 95% CI: 0.248, 0.527), taking ANC (OR: 0.271, 95% CI: 0.192; 0.382 for 1-4 visits), taking PNC (OR: 0.303, 95% CI: 0.216; 0.425) were statistically significant determinants of lowering infant death. While carrying multiple fetus (OR: 6.634, 95% CI: 3.247; 13.555) was exposed as a risk factor of infant mortality. Most significant factors influencing infant mortality for all 24 developing countries were number of fetus (OR: 0.193, 95% CI: 0.176; 0.213), taking ANC (OR: 0.356, 95% CI: 0.311; 0.407) and taking PNC (OR: 0.302, 95% CI: 0.243; 0.375). Conclusion In this study, the number of the fetus, taking ANC and PNC, was the most significant factor affecting the risk of infant mortality in developing countries. So, anticipation and control projects ought to be taken in the field in regard to these hazard factors.
探索婴儿死亡率的影响因素:基于人口和健康调查数据的24个发展中国家混合方法研究
目的:本研究旨在利用最新的人口与健康调查数据,发现24个发展中国家婴儿死亡率的流行情况,并评估不同因素如何影响婴儿死亡率。方法:本研究采用混合方法设计,汇集了来自其他24个国家的横断面研究数据,以扩大婴儿死亡率的视角。该研究使用了2013年至2019年24个不同发展中国家的最新可用的国土安全部数据。最后采用描述性分析、二元logistic回归模型、随机效应元分析和森林样地进行分析。结果:二元logistic回归模型显示,孟加拉国父亲受教育程度较高(OR: 0.344, 95%CI: 0.147;0.807),二胎及以上顺序婴儿(or: 0.362, 95%CI: 0.248, 0.527),服用ANC (or: 0.271, 95%CI: 0.192;1-4次就诊0.382),服用PNC (OR: 0.303, 95% CI: 0.216;0.425)是降低婴儿死亡率的统计学显著决定因素。当携带多胎时(OR: 6.634, 95% CI: 3.247;13.555)是婴儿死亡的危险因素。影响所有24个发展中国家婴儿死亡率的最重要因素是胎儿数(OR: 0.193, 95% CI: 0.176;0.213),服用ANC (OR: 0.356, 95%CI: 0.311;0.407)和服用PNC (OR: 0.302, 95% CI: 0.243;0.375)。结论在本研究中,影响发展中国家婴儿死亡风险的最重要因素是胎儿数量、服用ANC和PNC。因此,对这些危害因素应在现场进行预测和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信