Minimizing Polynomial Functions

P. Parrilo, B. Sturmfels
{"title":"Minimizing Polynomial Functions","authors":"P. Parrilo, B. Sturmfels","doi":"10.1090/dimacs/060/08","DOIUrl":null,"url":null,"abstract":"We compare algorithms for global optimization of polynomial functions in many variables. It is demonstrated that existing algebraic methods (Gr\\\"obner bases, resultants, homotopy methods) are dramatically outperformed by a relaxation technique, due to N.Z. Shor and the first author, which involves sums of squares and semidefinite programming. This opens up the possibility of using semidefinite programming relaxations arising from the Positivstellensatz for a wide range of computational problems in real algebraic geometry. \nThis paper was presented at the Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, held at DIMACS, Rutgers University, March 12-16, 2001.","PeriodicalId":363327,"journal":{"name":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"366","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/060/08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 366

Abstract

We compare algorithms for global optimization of polynomial functions in many variables. It is demonstrated that existing algebraic methods (Gr\"obner bases, resultants, homotopy methods) are dramatically outperformed by a relaxation technique, due to N.Z. Shor and the first author, which involves sums of squares and semidefinite programming. This opens up the possibility of using semidefinite programming relaxations arising from the Positivstellensatz for a wide range of computational problems in real algebraic geometry. This paper was presented at the Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, held at DIMACS, Rutgers University, March 12-16, 2001.
最小化多项式函数
我们比较了多变量多项式函数的全局优化算法。由N.Z. Shor和第一作者提出的一种涉及平方和和半定规划的松弛技术,证明了现有的代数方法(Gr\ \ obner基,结果式,同伦方法)的性能明显优于现有的代数方法。这为在实际代数几何中广泛的计算问题中使用由Positivstellensatz引起的半定规划松弛开辟了可能性。这篇论文发表在2001年3月12-16日在罗格斯大学DIMACS举行的数学和计算机科学中真实代数几何的算法和定量方面的研讨会上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信