Multipath Mitigation in Global Navigation Satellite Systems Using a Bayesian Hierarchical Model With Bernoulli Laplacian Priors

Julien Lesouple, J. Tourneret, M. Sahmoudi, Franck Barbiero, Frederic Faurie
{"title":"Multipath Mitigation in Global Navigation Satellite Systems Using a Bayesian Hierarchical Model With Bernoulli Laplacian Priors","authors":"Julien Lesouple, J. Tourneret, M. Sahmoudi, Franck Barbiero, Frederic Faurie","doi":"10.1109/SSP.2018.8450818","DOIUrl":null,"url":null,"abstract":"A new sparse estimation method was recently introduced in a previous work to correct biases due to multipath (MP) in GNSS measurements. The proposed strategy was based on the resolution of a LASSO problem constructed from the navigation equations using the reweighted $-\\ell _{1}$ method. This strategy requires to adjust the regularization parameters balancing the data fidelity term and the involved regularizations. This paper introduces a new Bayesian estimation method allowing the MP biases and the unknown model parameters and hyperparameters to be estimated directly from the GNSS measurements. The proposed method is based on Bernoulli-Laplacian priors, promoting sparsity of MP biases.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new sparse estimation method was recently introduced in a previous work to correct biases due to multipath (MP) in GNSS measurements. The proposed strategy was based on the resolution of a LASSO problem constructed from the navigation equations using the reweighted $-\ell _{1}$ method. This strategy requires to adjust the regularization parameters balancing the data fidelity term and the involved regularizations. This paper introduces a new Bayesian estimation method allowing the MP biases and the unknown model parameters and hyperparameters to be estimated directly from the GNSS measurements. The proposed method is based on Bernoulli-Laplacian priors, promoting sparsity of MP biases.
基于贝叶斯层次模型和伯努利拉普拉斯先验的全球卫星导航系统多径缓解
在之前的研究中,提出了一种新的稀疏估计方法来纠正GNSS测量中由于多径(MP)引起的偏差。该策略是基于用重加权$-\ well _{1}$方法求解由导航方程构造的LASSO问题。该策略需要调整正则化参数,以平衡数据保真度项和所涉及的正则化。本文介绍了一种新的贝叶斯估计方法,该方法允许直接从GNSS测量中估计MP偏差以及未知模型参数和超参数。该方法基于伯努利-拉普拉斯先验,提高了MP偏差的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信