Distinct Angles and Angle Chains in Three Dimensions

R. Ascoli, Livia Betti, J. L. Duke, Xuyan Liu, Wyatt Milgrim, Steven J. Miller, E. Palsson, F. Acosta, Santiago Velazquez Iannuzzelli
{"title":"Distinct Angles and Angle Chains in Three Dimensions","authors":"R. Ascoli, Livia Betti, J. L. Duke, Xuyan Liu, Wyatt Milgrim, Steven J. Miller, E. Palsson, F. Acosta, Santiago Velazquez Iannuzzelli","doi":"10.46298/dmtcs.10037","DOIUrl":null,"url":null,"abstract":"In 1946, Erd\\H{o}s posed the distinct distance problem, which seeks to find\nthe minimum number of distinct distances between pairs of points selected from\nany configuration of $n$ points in the plane. The problem has since been\nexplored along with many variants, including ones that extend it into higher\ndimensions. Less studied but no less intriguing is Erd\\H{o}s' distinct angle\nproblem, which seeks to find point configurations in the plane that minimize\nthe number of distinct angles. In their recent paper \"Distinct Angles in\nGeneral Position,\" Fleischmann, Konyagin, Miller, Palsson, Pesikoff, and Wolf\nuse a logarithmic spiral to establish an upper bound of $O(n^2)$ on the minimum\nnumber of distinct angles in the plane in general position, which prohibits\nthree points on any line or four on any circle.\n We consider the question of distinct angles in three dimensions and provide\nbounds on the minimum number of distinct angles in general position in this\nsetting. We focus on pinned variants of the question, and we examine explicit\nconstructions of point configurations in $\\mathbb{R}^3$ which use\nself-similarity to minimize the number of distinct angles. Furthermore, we\nstudy a variant of the distinct angles question regarding distinct angle chains\nand provide bounds on the minimum number of distinct chains in $\\mathbb{R}^2$\nand $\\mathbb{R}^3$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.10037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In 1946, Erd\H{o}s posed the distinct distance problem, which seeks to find the minimum number of distinct distances between pairs of points selected from any configuration of $n$ points in the plane. The problem has since been explored along with many variants, including ones that extend it into higher dimensions. Less studied but no less intriguing is Erd\H{o}s' distinct angle problem, which seeks to find point configurations in the plane that minimize the number of distinct angles. In their recent paper "Distinct Angles in General Position," Fleischmann, Konyagin, Miller, Palsson, Pesikoff, and Wolf use a logarithmic spiral to establish an upper bound of $O(n^2)$ on the minimum number of distinct angles in the plane in general position, which prohibits three points on any line or four on any circle. We consider the question of distinct angles in three dimensions and provide bounds on the minimum number of distinct angles in general position in this setting. We focus on pinned variants of the question, and we examine explicit constructions of point configurations in $\mathbb{R}^3$ which use self-similarity to minimize the number of distinct angles. Furthermore, we study a variant of the distinct angles question regarding distinct angle chains and provide bounds on the minimum number of distinct chains in $\mathbb{R}^2$ and $\mathbb{R}^3$.
三维中的不同角度和角链
1946年,Erd\H{o}s提出了明显距离问题,该问题寻求从平面上$n$个点的许多位形中选择点对之间的明显距离的最小个数。从那以后,人们对这个问题进行了许多变体的探索,包括将其扩展到更高维度的变体。研究较少但同样有趣的是Erd\H{o}s的独角问题,它寻求在平面上找到使独角数量最小化的点构型。Fleischmann, Konyagin, Miller, Palsson, Pesikoff和wolff在他们最近的论文“不同角度一般位置”中,用对数螺旋建立了平面上不同角度的最小数量的上界0 (n^2)$,该上界禁止在任何直线上有三个点或在任何圆上有四个点。我们考虑了三维空间中不同角度的问题,并给出了在这种情况下一般位置上不同角度的最小数量的边界。我们专注于问题的固定变体,并研究了$\mathbb{R}^3$中点配置的显式结构,它使用自相似性来最小化不同角度的数量。进一步,我们研究了关于不同角链的不同角问题的一个变体,并给出了不同角链在$\mathbb{R}^2$和$\mathbb{R}^3$上的最小个数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信