Automatic informative tissue's discriminators in WCE

Omid Haji-Maghsoudi, Alireza Talebpour, Hamid Soltanian-Zadeh, Hossein Asl Soleimani
{"title":"Automatic informative tissue's discriminators in WCE","authors":"Omid Haji-Maghsoudi, Alireza Talebpour, Hamid Soltanian-Zadeh, Hossein Asl Soleimani","doi":"10.1109/IST.2012.6295538","DOIUrl":null,"url":null,"abstract":"Wireless capsule endoscopy (WCE) is a new device which investigates the entire gastrointestinal (GI) and especially small bowel. About 55000 frames are recorded in an examination for a capsule which captures two frames per second. Thus, it is essential to find an automatic and intelligent method to help physicians. The WCE videos have lots of uninformative parts (such as extraneous matters, bubbled, and dark part), so preprocessing is necessary to separate these uninformative regions in a frame or reduce frames' numbers. In this paper, we introduce two novel methods to detect automatically uninformative parts. In order to achieve this goal, we use two Mathematical Morphological operations, sigmoid function as a method to segment regions, statistic features, Gabor filters, fisher score test to reduce number of features, neural network and discriminators in color space. Our experimental studies indicates that precision, sensitivity, accuracy, and specificity are respectively 96.13%, 95.30%, 96.35% and 97.00% in the first method, and 90.17%, 95.68%, 93.72%, and 92.71%, respectively in the second method.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Wireless capsule endoscopy (WCE) is a new device which investigates the entire gastrointestinal (GI) and especially small bowel. About 55000 frames are recorded in an examination for a capsule which captures two frames per second. Thus, it is essential to find an automatic and intelligent method to help physicians. The WCE videos have lots of uninformative parts (such as extraneous matters, bubbled, and dark part), so preprocessing is necessary to separate these uninformative regions in a frame or reduce frames' numbers. In this paper, we introduce two novel methods to detect automatically uninformative parts. In order to achieve this goal, we use two Mathematical Morphological operations, sigmoid function as a method to segment regions, statistic features, Gabor filters, fisher score test to reduce number of features, neural network and discriminators in color space. Our experimental studies indicates that precision, sensitivity, accuracy, and specificity are respectively 96.13%, 95.30%, 96.35% and 97.00% in the first method, and 90.17%, 95.68%, 93.72%, and 92.71%, respectively in the second method.
WCE中自动信息组织鉴别器
无线胶囊内窥镜(WCE)是一种对整个胃肠道特别是小肠进行检查的新型设备。在对胶囊的检查中记录约55000帧,该胶囊每秒捕获两帧。因此,寻找一种自动智能的方法来帮助医生是非常必要的。WCE视频中存在大量无信息的部分(如无关物、气泡和暗部),因此需要对这些无信息的区域进行预处理,以分离帧内的这些区域或减少帧数。本文介绍了两种自动检测无信息部件的新方法。为了实现这一目标,我们使用了两种数学形态学操作,sigmoid函数作为区域分割的方法,统计特征,Gabor滤波器,fisher分数测试减少特征数量,神经网络和色彩空间的判别器。我们的实验研究表明,第一种方法的精密度、灵敏度、准确度和特异性分别为96.13%、95.30%、96.35%和97.00%,第二种方法的精密度、灵敏度、准确度和特异性分别为90.17%、95.68%、93.72%和92.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信