A Silicon Neuron-based Bio-Front-End for Ultra Low Power Bio-Monitoring at the Edge

T. Shivangi, M. Rahimi, G. Gargiulo, B. Kailath, T. J. Hamilton
{"title":"A Silicon Neuron-based Bio-Front-End for Ultra Low Power Bio-Monitoring at the Edge","authors":"T. Shivangi, M. Rahimi, G. Gargiulo, B. Kailath, T. J. Hamilton","doi":"10.1109/SSCI47803.2020.9308445","DOIUrl":null,"url":null,"abstract":"This paper presents the circuits for an edge-based bio-front-end implemented using an integrate-and-fire silicon neuron model in 22nm SOI CMOS Technology. The proposed implementation encodes both positive and negative input signals separately and, like its biological counterpart, provides asynchronous output. This asynchronous output allows for maximum sensitivity to high-information content input signals and low sensitivity for low-information content. In the proposed design, the firing rate can be controlled by an adaptation circuit to achieve maximum power savings. We demonstrate this design with a sinusoidal test signal and pre-recorded ECG signals. The proposed design achieves ultra-low-power consumption; by applying a sinusoidal input and ECG input the power consumption without adaptation (with adaptation) is 4. 069SnW(3.999nW) and 5. 1529nW (3.311SnW), respectively. In addition, the reconstruction of the ECG signal is demonstrated and the signal to error for the reconstructed ECG signal is 30.2 dB.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the circuits for an edge-based bio-front-end implemented using an integrate-and-fire silicon neuron model in 22nm SOI CMOS Technology. The proposed implementation encodes both positive and negative input signals separately and, like its biological counterpart, provides asynchronous output. This asynchronous output allows for maximum sensitivity to high-information content input signals and low sensitivity for low-information content. In the proposed design, the firing rate can be controlled by an adaptation circuit to achieve maximum power savings. We demonstrate this design with a sinusoidal test signal and pre-recorded ECG signals. The proposed design achieves ultra-low-power consumption; by applying a sinusoidal input and ECG input the power consumption without adaptation (with adaptation) is 4. 069SnW(3.999nW) and 5. 1529nW (3.311SnW), respectively. In addition, the reconstruction of the ECG signal is demonstrated and the signal to error for the reconstructed ECG signal is 30.2 dB.
基于硅神经元的边缘超低功耗生物监测生物前端
本文介绍了一种基于边缘的生物前端电路,该电路采用22nm SOI CMOS技术中的集成与发射硅神经元模型实现。所提出的实现分别对正输入信号和负输入信号进行编码,并像其生物对等体一样提供异步输出。这种异步输出允许对高信息内容输入信号的最大灵敏度和对低信息内容的低灵敏度。在提出的设计中,可以通过自适应电路控制发射速率,以实现最大的功耗节约。我们用正弦测试信号和预先记录的心电信号来演示这种设计。本设计实现了超低功耗;通过应用正弦输入和心电输入,无自适应(有自适应)的功耗为4。069雪w (3.99 nw)和5。1529nW (3.311SnW)。此外,对心电信号进行了重构,重构后的心电信号的信噪比为30.2 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信