Factorization Machines for Hybrid Recommendation Systems Based on Behavioral, Product, and Customer Data

S. Geuens
{"title":"Factorization Machines for Hybrid Recommendation Systems Based on Behavioral, Product, and Customer Data","authors":"S. Geuens","doi":"10.1145/2792838.2796542","DOIUrl":null,"url":null,"abstract":"This study creates a hybrid recommendation system for online offer personalization of an e-commerce company. The system goes beyond existing literature by combining four different data sources, i.e. customer data, product data, implicit and explicit behavioral data, in a single algorithm. Factorization machines are employed as model-based algorithm and have as advantage that the four data sources are incorporated in a single model by feature combination. Results show that hybridization of the four distinct data sources improves accuracy compared to (i) factorization machines based on a single data source and (ii) a real-life company benchmark model using collaborative filtering.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2796542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This study creates a hybrid recommendation system for online offer personalization of an e-commerce company. The system goes beyond existing literature by combining four different data sources, i.e. customer data, product data, implicit and explicit behavioral data, in a single algorithm. Factorization machines are employed as model-based algorithm and have as advantage that the four data sources are incorporated in a single model by feature combination. Results show that hybridization of the four distinct data sources improves accuracy compared to (i) factorization machines based on a single data source and (ii) a real-life company benchmark model using collaborative filtering.
基于行为、产品和客户数据的混合推荐系统的分解机
本研究为某电子商务公司的在线报价个性化创建了一个混合推荐系统。该系统超越了现有文献,将四种不同的数据源,即客户数据、产品数据、隐式和显式行为数据,结合在一个单一的算法中。因式分解机是一种基于模型的算法,其优点是通过特征组合将四个数据源合并到一个模型中。结果表明,与(i)基于单一数据源的分解机器和(ii)使用协同过滤的现实公司基准模型相比,四种不同数据源的杂交提高了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信