{"title":"RVDSE: Efficient Result Verifiable Searchable Encryption in Redactable Blockchain","authors":"Ruizhong Du, Na Liu, Mingyue Li, Junfeng Tian","doi":"10.1109/ISCC58397.2023.10218106","DOIUrl":null,"url":null,"abstract":"To solve the inefficiencies, inflexibility in updates, and high storage costs associated with current result verifiable searchable encryption schemes, we propose an efficient scheme that result verifiable dynamic searchable encryption in a redactable blockchain (RVDSE). By dividing the inverted index into blocks, uploading corresponding verification tags to the blockchain, and using smart contracts to verify query results, we improve query and verification performance. Additionally, we employ blockchain rewriting technology to update tags in the result checklist, thereby improving blockchain data update performance and scalability while maintaining constant storage overhead. Security analysis confirms that our solution guarantees query result accuracy and completeness. Experimental results demonstrate that our approach enhances query and result verification efficiency, even with low-speed blockchain data scale growth, particularly as data collection scales increase.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the inefficiencies, inflexibility in updates, and high storage costs associated with current result verifiable searchable encryption schemes, we propose an efficient scheme that result verifiable dynamic searchable encryption in a redactable blockchain (RVDSE). By dividing the inverted index into blocks, uploading corresponding verification tags to the blockchain, and using smart contracts to verify query results, we improve query and verification performance. Additionally, we employ blockchain rewriting technology to update tags in the result checklist, thereby improving blockchain data update performance and scalability while maintaining constant storage overhead. Security analysis confirms that our solution guarantees query result accuracy and completeness. Experimental results demonstrate that our approach enhances query and result verification efficiency, even with low-speed blockchain data scale growth, particularly as data collection scales increase.