Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging

Hamed Tabrizchi, A. Mosavi, Z. Vámossy, A. Várkonyi-Kóczy
{"title":"Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging","authors":"Hamed Tabrizchi, A. Mosavi, Z. Vámossy, A. Várkonyi-Kóczy","doi":"10.1109/MeMeA52024.2021.9478715","DOIUrl":null,"url":null,"abstract":"Since the beginning of the coronavirus disease (COVID-19) pandemic several machine learning and deep learning methods had been introduced to detect the infected patients using the X-Ray or CT scan images. Numerous sophisticated data-driven methods had been introduced to improve the performance and the accuracy of the diagnosis models. This paper proposes an improved densely connected convolutional networks (DenseNet) method based on transfer learning (TL) to enhance the model performance. The results show promising model accuracy.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Since the beginning of the coronavirus disease (COVID-19) pandemic several machine learning and deep learning methods had been introduced to detect the infected patients using the X-Ray or CT scan images. Numerous sophisticated data-driven methods had been introduced to improve the performance and the accuracy of the diagnosis models. This paper proposes an improved densely connected convolutional networks (DenseNet) method based on transfer learning (TL) to enhance the model performance. The results show promising model accuracy.
基于胸部x线影像诊断冠状病毒病(COVID-19)的密集连接卷积网络(DenseNet
自2019冠状病毒病(COVID-19)大流行开始以来,已经引入了几种机器学习和深度学习方法,通过x射线或CT扫描图像检测感染患者。为了提高诊断模型的性能和准确性,引入了许多复杂的数据驱动方法。为了提高模型的性能,提出了一种基于迁移学习(TL)的改进密集连接卷积网络(DenseNet)方法。结果表明,该模型具有良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信