Image classification of artificial fingerprints using Gabor wavelet filters, self-organising maps and Hermite/Laguerre neural networks

Leif E. Peterson, K. Larin
{"title":"Image classification of artificial fingerprints using Gabor wavelet filters, self-organising maps and Hermite/Laguerre neural networks","authors":"Leif E. Peterson, K. Larin","doi":"10.1504/IJKESDP.2009.028817","DOIUrl":null,"url":null,"abstract":"Image classification was performed using Gabor wavelet filters for image feature extraction, self-organising maps (SOM) for dimensional reduction of Gabor wavelet filters, and forward (FNN), Hermite (HNN) and Laguerre (LNN) neural networks to classify real and artificial fingerprint images from optical coherence tomography (OCT). Use of a SOM after Gabor edge detection of OCT images of fingerprint and material surfaces resulted in the greatest classification performance when compared with moments based on colour, texture and shape. The FNN and HNN performed similarly, however, the LNN performed the worst at a low number of hidden nodes but overtook performance of the FNN and HNN as the number of hidden nodes approached n = 10.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2009.028817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Image classification was performed using Gabor wavelet filters for image feature extraction, self-organising maps (SOM) for dimensional reduction of Gabor wavelet filters, and forward (FNN), Hermite (HNN) and Laguerre (LNN) neural networks to classify real and artificial fingerprint images from optical coherence tomography (OCT). Use of a SOM after Gabor edge detection of OCT images of fingerprint and material surfaces resulted in the greatest classification performance when compared with moments based on colour, texture and shape. The FNN and HNN performed similarly, however, the LNN performed the worst at a low number of hidden nodes but overtook performance of the FNN and HNN as the number of hidden nodes approached n = 10.
基于Gabor小波滤波器、自组织图和Hermite/Laguerre神经网络的人工指纹图像分类
图像分类使用Gabor小波滤波器进行图像特征提取,自组织映射(SOM)用于Gabor小波滤波器的降维,前向(FNN)、Hermite (HNN)和Laguerre (LNN)神经网络对光学相干断层扫描(OCT)的真实指纹图像和人工指纹图像进行分类。与基于颜色、纹理和形状的矩相比,在对指纹和材料表面的OCT图像进行Gabor边缘检测后使用SOM的分类性能最好。FNN和HNN的表现相似,然而,LNN在隐藏节点数量较少时表现最差,但当隐藏节点数量接近n = 10时超过了FNN和HNN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信