Estimating users' mode transition functions and activity levels from social media

Hamilton E. Link, Jeremy D. Wendt, R. Field, Jocelyn Marthe
{"title":"Estimating users' mode transition functions and activity levels from social media","authors":"Hamilton E. Link, Jeremy D. Wendt, R. Field, Jocelyn Marthe","doi":"10.1145/3110025.3116195","DOIUrl":null,"url":null,"abstract":"We present a temporal model of individual-scale social media user behavior, comprising modal activity levels and mode switching patterns. We show that this model can be effectively and easily learned from available social media data, and that our model is sufficiently flexible to capture diverse users' daily activity patterns. In applications such as electric power load prediction, computer network traffic analysis, disease spread modeling, and disease outbreak forecasting, it is useful to have a model of individual-scale patterns of human behavior. Our user model is intended to be suitable for integration into such population models, for future applications of prediction, change detection, or agent-based simulation.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3116195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a temporal model of individual-scale social media user behavior, comprising modal activity levels and mode switching patterns. We show that this model can be effectively and easily learned from available social media data, and that our model is sufficiently flexible to capture diverse users' daily activity patterns. In applications such as electric power load prediction, computer network traffic analysis, disease spread modeling, and disease outbreak forecasting, it is useful to have a model of individual-scale patterns of human behavior. Our user model is intended to be suitable for integration into such population models, for future applications of prediction, change detection, or agent-based simulation.
估计用户模式转换功能和社交媒体活动水平
我们提出了一个个人尺度社交媒体用户行为的时间模型,包括模式活动水平和模式切换模式。我们表明,这个模型可以有效而轻松地从可用的社交媒体数据中学习,并且我们的模型足够灵活,可以捕获不同用户的日常活动模式。在电力负荷预测、计算机网络流量分析、疾病传播建模和疾病爆发预测等应用中,有一个人类行为的个体尺度模式模型是有用的。我们的用户模型旨在适合集成到这样的人口模型中,用于未来的预测、变化检测或基于代理的模拟应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信