Robust Video Super-resolution Using Low-rank Matrix Completion

Chenyu Liu, Xianlin Zhang, Yang Liu, Xueming Li
{"title":"Robust Video Super-resolution Using Low-rank Matrix Completion","authors":"Chenyu Liu, Xianlin Zhang, Yang Liu, Xueming Li","doi":"10.1145/3177404.3177423","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust super-resolution method using low rank matrix completion for videos with local motions and local deformations. It is based on the multi-frame low rank matrix completion super-resolution (MCSR) framework proposed by Chen. Nonlocal multi-scale similar patches are extracted in registration instead of optical flow for complex motions. By rearranging patches extracted from low resolution frames, super-resolution problem is converted to matrix completion. Low resolution patches is represented as observed entries in a low-rank matrix. We adopt alternating direction method of multipliers (ADMM) to minimize nuclear norm and introduce a weighted fusion method to acquire final high resolution patches. Experimental results showed that the proposed method outperformed MCSR on videos with complex motions.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"1069 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a robust super-resolution method using low rank matrix completion for videos with local motions and local deformations. It is based on the multi-frame low rank matrix completion super-resolution (MCSR) framework proposed by Chen. Nonlocal multi-scale similar patches are extracted in registration instead of optical flow for complex motions. By rearranging patches extracted from low resolution frames, super-resolution problem is converted to matrix completion. Low resolution patches is represented as observed entries in a low-rank matrix. We adopt alternating direction method of multipliers (ADMM) to minimize nuclear norm and introduce a weighted fusion method to acquire final high resolution patches. Experimental results showed that the proposed method outperformed MCSR on videos with complex motions.
使用低秩矩阵补全鲁棒视频超分辨率
在本文中,我们提出了一种基于低秩矩阵补全的鲁棒超分辨率方法,用于具有局部运动和局部变形的视频。该算法基于Chen提出的多帧低秩矩阵补全超分辨率(MCSR)框架。在配准中提取非局部多尺度相似块,代替复杂运动的光流。通过对低分辨率帧提取的小块进行重新排列,将超分辨率问题转化为矩阵补全。低分辨率补丁表示为低秩矩阵中的观测条目。我们采用交替方向乘法器(ADMM)最小化核范数,并引入加权融合方法获得最终的高分辨率补丁。实验结果表明,该方法在具有复杂运动的视频上优于MCSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信