The Effect of Pedicle Screw Thread Shape on the Stress Concentration Under Lateral Bending

Yucheng Yang, Q. Ma
{"title":"The Effect of Pedicle Screw Thread Shape on the Stress Concentration Under Lateral Bending","authors":"Yucheng Yang, Q. Ma","doi":"10.1115/pvp2019-93162","DOIUrl":null,"url":null,"abstract":"\n Pedicle screws (PS) are frequently used in medical spinal column fixation. Despite 7 out of 100 pedicle screws fracture inside of the patients’ body and under the claim that lateral bending is the main failure mode, little research has addressed the stress characteristics and the fracture location of the PS under lateral bending. This study focuses on the effect of thread design on the magnitude and location of maximum stress concentration. Four types of thread shapes are considered including V-shape, square-shape, buttress, and reverse buttress. Three-dimensional (3D) finite element (FE) methods are used in this investigation. A load of 150 Newton is applied at the screw head to simulate lateral bending. The models are created in SolidWorks. The 3D FE analysis is performed using the standard coding of ANSYS Workbench 19.1. Based on this study, it is found that the high stress concentration is located at the cortical bone region rather than at the cancellous bone region. Although the general stress patterns are similar, the PS thread shape design and the thread fillet radius may significantly affect on the magnitude and location of maximum stress concentration.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedicle screws (PS) are frequently used in medical spinal column fixation. Despite 7 out of 100 pedicle screws fracture inside of the patients’ body and under the claim that lateral bending is the main failure mode, little research has addressed the stress characteristics and the fracture location of the PS under lateral bending. This study focuses on the effect of thread design on the magnitude and location of maximum stress concentration. Four types of thread shapes are considered including V-shape, square-shape, buttress, and reverse buttress. Three-dimensional (3D) finite element (FE) methods are used in this investigation. A load of 150 Newton is applied at the screw head to simulate lateral bending. The models are created in SolidWorks. The 3D FE analysis is performed using the standard coding of ANSYS Workbench 19.1. Based on this study, it is found that the high stress concentration is located at the cortical bone region rather than at the cancellous bone region. Although the general stress patterns are similar, the PS thread shape design and the thread fillet radius may significantly affect on the magnitude and location of maximum stress concentration.
椎弓根螺钉螺纹形状对侧弯下应力集中的影响
椎弓根螺钉(PS)常用于医学脊柱固定。尽管100个椎弓根螺钉中有7个在患者体内发生骨折,并且声称侧弯是主要的破坏方式,但很少有研究涉及椎弓根螺钉在侧弯下的应力特征和骨折位置。本研究的重点是螺纹设计对最大应力集中的大小和位置的影响。四种类型的螺纹形状被认为包括v形,方形,支撑和反向支撑。本研究采用三维(3D)有限元(FE)方法。在螺旋头处施加150牛顿的载荷来模拟侧向弯曲。模型是在SolidWorks中创建的。采用ANSYS Workbench 19.1的标准编码进行三维有限元分析。本研究发现高应力集中在皮质骨区而非松质骨区。虽然一般应力形态相似,但PS螺纹形状设计和螺纹圆角半径对最大应力集中的大小和位置有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信