A Multicore Path to Connectomics-on-Demand

A. Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk, Tim Kaler, Gergely Ódor, D. Budden, A. Zlateski, N. Shavit
{"title":"A Multicore Path to Connectomics-on-Demand","authors":"A. Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk, Tim Kaler, Gergely Ódor, D. Budden, A. Zlateski, N. Shavit","doi":"10.1145/3155284.3018766","DOIUrl":null,"url":null,"abstract":"Connectomics is an emerging field of neurobiology that uses cutting edge machine learning and image processing to extract brain connectivity graphs from electron microscopy images. It has long been assumed that the processing of connectomics data will require mass storage and farms of CPUs and GPUs and will take months if not years. This talk shows the feasibility of designing a high-throughput connectomics-on-demand system that runs on a multicore machine with less than 100 cores and extracts connectomes at the terabyte per hour pace of modern electron microscopes. Building this system required solving algorithmic and performance engineering issues related to scaling machine learning on multicore architectures, and may have important lessons for other problem spaces in the natural sciences, where until now large distributed server or GPU farms seemed to be the only way to go.","PeriodicalId":346939,"journal":{"name":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3155284.3018766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Connectomics is an emerging field of neurobiology that uses cutting edge machine learning and image processing to extract brain connectivity graphs from electron microscopy images. It has long been assumed that the processing of connectomics data will require mass storage and farms of CPUs and GPUs and will take months if not years. This talk shows the feasibility of designing a high-throughput connectomics-on-demand system that runs on a multicore machine with less than 100 cores and extracts connectomes at the terabyte per hour pace of modern electron microscopes. Building this system required solving algorithmic and performance engineering issues related to scaling machine learning on multicore architectures, and may have important lessons for other problem spaces in the natural sciences, where until now large distributed server or GPU farms seemed to be the only way to go.
按需连接组学的多核路径
连接组学是神经生物学的一个新兴领域,它使用尖端的机器学习和图像处理从电子显微镜图像中提取大脑连接图。长期以来,人们一直认为,处理连接组学数据将需要大量的存储空间和cpu和gpu集群,并且需要数月甚至数年的时间。这次演讲展示了设计一个高通量连接组按需系统的可行性,该系统运行在一个少于100核的多核机器上,并以每小时tb的速度提取现代电子显微镜的连接组。构建这个系统需要解决与在多核架构上扩展机器学习相关的算法和性能工程问题,并且可能对自然科学中的其他问题空间有重要的借鉴意义,到目前为止,大型分布式服务器或GPU农场似乎是唯一的出路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信