Bayesian Inference for Quantal Response Equilibrium in Normal-Form Games

J. Bland
{"title":"Bayesian Inference for Quantal Response Equilibrium in Normal-Form Games","authors":"J. Bland","doi":"10.2139/ssrn.3748586","DOIUrl":null,"url":null,"abstract":"This paper develops a framework for estimating Quantal Response Equilibrium models from experimental data using Bayesian techniques. Bayesian techniques offer some advantages over the more commonly-used maximum likelihood approach: (i) the accuracy of the posterior simulation is limited by (increasingly plentiful) computational resources, both in hardware and software, rather than the validity of an asymptotic assumption that may not be reasonable with typical experimental sample sizes; (ii) Bayesian hierarchical models are a useful way to organize heterogeneity in one's data; and (iii) Bayesian inference allows us to test whether Quantal Response Equilibrium better organizes data than does (say) Nash equilibrium or purely random behavior, without rigging the test in favor of one of these by calling it the null hypothesis.<br><br>As Quantal Response Equilibrium is a non-linear model, I also discuss some issues with choosing appropriate priors. Namely, choosing a very flat prior for the choice precision parameter implies a prior on choice probabilities with too much mass near Nash equilibrium and/or random choice. I propose a prior calibration process which seeks to avoid this problem by targeting the implied prior distribution of equilibrium choice probabilities.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3748586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a framework for estimating Quantal Response Equilibrium models from experimental data using Bayesian techniques. Bayesian techniques offer some advantages over the more commonly-used maximum likelihood approach: (i) the accuracy of the posterior simulation is limited by (increasingly plentiful) computational resources, both in hardware and software, rather than the validity of an asymptotic assumption that may not be reasonable with typical experimental sample sizes; (ii) Bayesian hierarchical models are a useful way to organize heterogeneity in one's data; and (iii) Bayesian inference allows us to test whether Quantal Response Equilibrium better organizes data than does (say) Nash equilibrium or purely random behavior, without rigging the test in favor of one of these by calling it the null hypothesis.

As Quantal Response Equilibrium is a non-linear model, I also discuss some issues with choosing appropriate priors. Namely, choosing a very flat prior for the choice precision parameter implies a prior on choice probabilities with too much mass near Nash equilibrium and/or random choice. I propose a prior calibration process which seeks to avoid this problem by targeting the implied prior distribution of equilibrium choice probabilities.
正则型对策中量子响应平衡的贝叶斯推理
本文开发了一个使用贝叶斯技术从实验数据估计量子响应平衡模型的框架。与更常用的最大似然方法相比,贝叶斯技术提供了一些优势:(i)后验模拟的准确性受到(日益丰富的)硬件和软件计算资源的限制,而不是受典型实验样本量可能不合理的渐近假设的有效性的限制;(ii)贝叶斯层次模型是组织数据异质性的有效方法;(iii)贝叶斯推理允许我们测试量子反应均衡是否比纳什均衡或纯粹的随机行为更好地组织数据,而不会通过将其称为零假设来操纵测试。由于量子反应平衡是一个非线性模型,我也讨论了选择合适的先验的一些问题。也就是说,为选择精度参数选择一个非常平坦的先验意味着在纳什均衡和/或随机选择附近有太多质量的选择概率的先验。我提出了一个先验校准过程,旨在通过针对均衡选择概率的隐含先验分布来避免这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信