Direct Adaptive Fuzzy-Based Neural Network Controller for a Human-Driven Knee Joint Orthosis

Oussama Bey, M. Chemachema, Y. Amirat, G. Fried, S. Mohammed
{"title":"Direct Adaptive Fuzzy-Based Neural Network Controller for a Human-Driven Knee Joint Orthosis","authors":"Oussama Bey, M. Chemachema, Y. Amirat, G. Fried, S. Mohammed","doi":"10.23919/ACC55779.2023.10155825","DOIUrl":null,"url":null,"abstract":"This paper presents a control error based direct adaptive Neural Network (NN) controller applied to a lower limb knee joint orthosis during flexion/extension movements. The proposed approach requires neither pre-knowledge of the exact human-orthosis system nonlinearities nor it’s exact parameters. Unlike the available NN control approaches that rely on the tracking errors to derive the adaptive weights, our approach represent an alternative way on which we introduce the control error for online updating of the NN weights. A Fuzzy Inference System (FIS) is exploited to estimate the unknown control error. Then, the NN weights are tuned directly using back-propagation algorithm based on a quadratic criterion of the control error independently from the tracking error. In terms of stability, the tracking error has been proved to converge exponentially to an arbitrary small set despite the presence of external disturbances. Simulations are conducted to evaluate the effectiveness of the proposed control approach.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a control error based direct adaptive Neural Network (NN) controller applied to a lower limb knee joint orthosis during flexion/extension movements. The proposed approach requires neither pre-knowledge of the exact human-orthosis system nonlinearities nor it’s exact parameters. Unlike the available NN control approaches that rely on the tracking errors to derive the adaptive weights, our approach represent an alternative way on which we introduce the control error for online updating of the NN weights. A Fuzzy Inference System (FIS) is exploited to estimate the unknown control error. Then, the NN weights are tuned directly using back-propagation algorithm based on a quadratic criterion of the control error independently from the tracking error. In terms of stability, the tracking error has been proved to converge exponentially to an arbitrary small set despite the presence of external disturbances. Simulations are conducted to evaluate the effectiveness of the proposed control approach.
人驱动膝关节矫形器的直接自适应模糊神经网络控制器
提出了一种基于控制误差的直接自适应神经网络(NN)控制器,应用于下肢膝关节矫形器屈伸运动中。所提出的方法既不需要预先知道确切的人-矫形器系统非线性,也不需要知道它的确切参数。与现有的依赖于跟踪误差来获得自适应权值的神经网络控制方法不同,我们的方法代表了一种引入控制误差来在线更新神经网络权值的替代方法。利用模糊推理系统(FIS)对未知控制误差进行估计。然后,基于独立于跟踪误差的控制误差二次准则,使用反向传播算法直接调整神经网络权值。在稳定性方面,证明了在存在外部干扰的情况下,跟踪误差呈指数收敛到任意小集。通过仿真验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信