Short-Term Load Forecasting Using Fuzzy Logic

J. Blancas, Julien Noel
{"title":"Short-Term Load Forecasting Using Fuzzy Logic","authors":"J. Blancas, Julien Noel","doi":"10.1109/TDC-LA.2018.8511751","DOIUrl":null,"url":null,"abstract":"In this paper, fuzzy logic (FL) is applied to the problem of short-term load forecasting (next day) in electrical power systems. To achieve this, it is necessary to select the historical data to be used and pre-process them using the c-means method, grouping them according to power levels (MW) to define the number of membership functions (MFs) to the fuzzy system, which is very important for the calculation of the lowest forecast error; finally, the historical data are entered into the fuzzy system implemented in MATLAB. This methodology is applied to predict the daily electrical load (demand) of the Peruvian Electrical System using the historical data of the actual demand executed for the study period and by calculating the MAPE error. It is shown that the FL offers better results than the conventional methodology for the forecast of the electrical load.","PeriodicalId":267301,"journal":{"name":"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC-LA.2018.8511751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper, fuzzy logic (FL) is applied to the problem of short-term load forecasting (next day) in electrical power systems. To achieve this, it is necessary to select the historical data to be used and pre-process them using the c-means method, grouping them according to power levels (MW) to define the number of membership functions (MFs) to the fuzzy system, which is very important for the calculation of the lowest forecast error; finally, the historical data are entered into the fuzzy system implemented in MATLAB. This methodology is applied to predict the daily electrical load (demand) of the Peruvian Electrical System using the historical data of the actual demand executed for the study period and by calculating the MAPE error. It is shown that the FL offers better results than the conventional methodology for the forecast of the electrical load.
基于模糊逻辑的短期负荷预测
本文将模糊逻辑应用于电力系统的短期负荷预测(次日)问题。为了实现这一目标,需要选择要使用的历史数据,并使用c-means方法对其进行预处理,根据功率等级(MW)对其进行分组,以定义模糊系统的隶属函数(MFs)的个数,这对于计算最小预测误差非常重要;最后将历史数据输入到MATLAB实现的模糊系统中。该方法应用于预测秘鲁电力系统的每日电力负荷(需求),使用研究期间执行的实际需求的历史数据并通过计算MAPE误差。结果表明,该方法对电力负荷的预测效果优于传统的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信