{"title":"Contextual multi-armed bandits for web server defense","authors":"T. Jung, Sylvain Martin, D. Ernst, G. Leduc","doi":"10.1109/IJCNN.2012.6252760","DOIUrl":null,"url":null,"abstract":"In this paper we argue that contextual multi-armed bandit algorithms could open avenues for designing self-learning security modules for computer networks and related tasks. The paper has two contributions: a conceptual and an algorithmical one. The conceptual contribution is to formulate the real-world problem of preventing HTTP-based attacks on web servers as a one-shot sequential learning problem, namely as a contextual multi-armed bandit. Our second contribution is to present CMABFAS, a new and computationally very cheap algorithm for general contextual multi-armed bandit learning that specifically targets domains with finite actions. We illustrate how CMABFAS could be used to design a fully self-learning meta filter for web servers that does not rely on feedback from the end-user (i.e., does not require labeled data) and report first convincing simulation results.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we argue that contextual multi-armed bandit algorithms could open avenues for designing self-learning security modules for computer networks and related tasks. The paper has two contributions: a conceptual and an algorithmical one. The conceptual contribution is to formulate the real-world problem of preventing HTTP-based attacks on web servers as a one-shot sequential learning problem, namely as a contextual multi-armed bandit. Our second contribution is to present CMABFAS, a new and computationally very cheap algorithm for general contextual multi-armed bandit learning that specifically targets domains with finite actions. We illustrate how CMABFAS could be used to design a fully self-learning meta filter for web servers that does not rely on feedback from the end-user (i.e., does not require labeled data) and report first convincing simulation results.