{"title":"Achieving Fair or Differentiated Cache Sharing in Power-Constrained Chip Multiprocessors","authors":"Xiaorui Wang, Kai Ma, Yefu Wang","doi":"10.1109/ICPP.2010.9","DOIUrl":null,"url":null,"abstract":"Limiting the peak power consumption of chip multiprocessors (CMPs) has recently received a lot of attention. In order to enable chip-level power capping, the peak power consumption of on-chip L2 caches in a CMP often needs to be constrained by dynamically transitioning selected cache banks into low-power modes. However, dynamic cache resizing for power capping may cause undesired long cache access latencies, and even thread starving and thrashing, for the applications running on the CMP. In this paper, we propose a novel cache management strategy that can limit the peak power consumption of L2 caches and provide fairness guarantees, such that the cache access latencies of the application threads co-scheduled on the CMP are impacted more uniformly. Our strategy is also extended to provide differentiated cache latency guarantees that can help the OS to enforce the desired thread priorities at the architectural level and achieve desired rates of thread progress for co-scheduled applications. Our solution features a two-tier control architecture rigorously designed based on advanced feedback control theory for guaranteed control accuracy and system stability. Extensive experimental results demonstrate that our solution can achieve the desired cache power capping, fair or differentiated cache sharing, and power-performance tradeoffs for many applications.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Limiting the peak power consumption of chip multiprocessors (CMPs) has recently received a lot of attention. In order to enable chip-level power capping, the peak power consumption of on-chip L2 caches in a CMP often needs to be constrained by dynamically transitioning selected cache banks into low-power modes. However, dynamic cache resizing for power capping may cause undesired long cache access latencies, and even thread starving and thrashing, for the applications running on the CMP. In this paper, we propose a novel cache management strategy that can limit the peak power consumption of L2 caches and provide fairness guarantees, such that the cache access latencies of the application threads co-scheduled on the CMP are impacted more uniformly. Our strategy is also extended to provide differentiated cache latency guarantees that can help the OS to enforce the desired thread priorities at the architectural level and achieve desired rates of thread progress for co-scheduled applications. Our solution features a two-tier control architecture rigorously designed based on advanced feedback control theory for guaranteed control accuracy and system stability. Extensive experimental results demonstrate that our solution can achieve the desired cache power capping, fair or differentiated cache sharing, and power-performance tradeoffs for many applications.