Entropy-based scheduling performance in real-time multiprocessor systems

C. CarlosA.Rincon, Daniel Rivas, A. Cheng
{"title":"Entropy-based scheduling performance in real-time multiprocessor systems","authors":"C. CarlosA.Rincon, Daniel Rivas, A. Cheng","doi":"10.1109/CISS56502.2023.10089704","DOIUrl":null,"url":null,"abstract":"In this paper, we present the performance analysis of the entropy-based scheduling approach in real-time multiprocessor systems. We analyze the effect of using the entropy-based scheduling layer in deadline-based (global Earliest Deadline First (EDF)), laxity-based (Least Laxity First (LLF)), and PFair-based (PD2) scheduling algorithms by measuring the number of preemptions, the number of job migrations, and the number of task migrations. The performance comparison results between the selected scheduling algorithms with their entropy-enabled versions showed that the entropy layer reduces the number of task migrations for all studied algorithms and reduces the number of job migrations for LLF and PD2.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the performance analysis of the entropy-based scheduling approach in real-time multiprocessor systems. We analyze the effect of using the entropy-based scheduling layer in deadline-based (global Earliest Deadline First (EDF)), laxity-based (Least Laxity First (LLF)), and PFair-based (PD2) scheduling algorithms by measuring the number of preemptions, the number of job migrations, and the number of task migrations. The performance comparison results between the selected scheduling algorithms with their entropy-enabled versions showed that the entropy layer reduces the number of task migrations for all studied algorithms and reduces the number of job migrations for LLF and PD2.
实时多处理器系统中基于熵的调度性能
本文对实时多处理器系统中基于熵的调度方法进行了性能分析。我们通过测量抢占数、作业迁移数和任务迁移数,分析了在基于截止日期(全局最早截止日期优先(EDF))、基于松散度(最小松散度优先(LLF))和基于pfair (PD2)调度算法中使用基于熵的调度层的效果。所选调度算法与其启用熵的版本之间的性能比较结果表明,熵层减少了所有研究算法的任务迁移次数,并减少了LLF和PD2的任务迁移次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信